博碩士論文 106622001 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:23 、訪客IP:18.117.165.66
姓名 高經富(Ching-Fu Kao)  查詢紙本館藏   畢業系所 地球科學學系
論文名稱 琉球隱沒帶最南段隱沒沉積物物理性質之研究
(Physical Properties of Under-Thrusting Sediment in the Southernmost Ryukyu Subduction Zone Derived by Large Offset Seismic Data Analysis)
相關論文
★ 高屏峽谷極上游區域峽谷侵蝕與泥貫入體活動之交互關係研究★ 基於深度學習的反射震測速度分析
★ 利用2.5 維密集式高解析電火花震測法研究高屏峽谷極上游區域的海床侵蝕作用★ 南海北部大陸邊緣震測地層與構造演化之研究
★ 利用多頻道電火花反射震測法研究南高屏陸坡區域沉積構造與演化過程★ 琉球隱沒帶最南段由隱沒過渡至碰撞 走向滑移斷層構造研究
★ 臺南盆地自始新世以來沉積層序發育過程及構造演化歷史
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2024-7-22以後開放)
摘要(中) 琉球隱沒帶位在台灣東部海域,由菲律賓海板塊隱沒到歐亞板塊之下所形成。過去的研究認為隱沒板塊粗糙體(Asperity)是影響隱沒帶地震規模大小的主要原因。而近幾年的研究表示增積岩體深部的隱沒沉積物(Under-Thrusting Sediment)物理性質也扮演了重要的角色。過去在琉球隱沒帶最南段已有許多地震與地體構造的相關研究,然而對隱沒沉積物物理性質卻還不甚清楚,為了探討琉球隱沒帶最南段的隱沒沉積物物理性質,本研究處理了5條台灣大地動力學計畫(TAIwan GEodynamics Research program, TAIGER)長支距多頻道反射震測線,搭配重合前深度移位(Pre-Stack Depth Migration, PSDM)技術得到地層速度模型,經過與正常膠結狀態地層速度模型修正後,得到代表沉積物膠結狀態(Consolidation State)的殘差速度模型。為了進一步探討影響沉積物膠結狀態的可能原因與其物理意義,本研究利用日本南海海槽(Nankai Trough)的大洋鑽探計畫(Ocean Drilling Program, ODP)鑽井資料進行地層孔隙率(Porosity)推估,並計算地層平均有效應力(Mean Effective Stress)分佈。
其結果顯示在加瓜海脊西側,靠近台灣的區域增積岩體深部大致上呈現不足膠結狀態(Under-Consolidation),並隨著遠離台灣逐漸轉變為過度膠結狀態(Over-Consolidation),在加瓜海脊東側則呈現不足膠結狀態為主。經過比對地層孔隙率分布與前人研究,可以推測不足膠結狀態的沉積物與孔隙流體有關。從平均有效應力分布中可以觀察到在加瓜海脊西側,隱沒沉積物在靠近台灣的區域有較大範圍的低有效應力區,並隨著遠離台灣逐步縮小,表示靠近台灣的區域增積岩體內的逆衝斷層較容易發生滑動,屬於低耦合狀態,相反的在遠離台灣的區域逆衝斷層較不易滑動,屬於強耦合狀態。
摘要(英) Ryukyu Subduction Zone is located in the eastern offshore of Taiwan, where the Philippine Sea Plate is subducting beneath the Eurasian Plate. The previous studies suggest that the existence of asperity on the downgoing plate may be accumulated the strain on the plate interface and also could be linked to occurrence of the catastrophic earthquake. However, recent studies (i.e. 2011 East Japan Trench earthquake) have shown that the physical properties of the Under-Thrusting Sediment may also play an important role. In the last decade, there have been studies on earthquake related or surface structures in the southernmost Ryukyu subduction zone. However, the physical properties of under-thrusting sediments in the study area are still not clear. In order to estimate the physical properties (such as velocity structures, porosity as well as stress field) of the under-thrusting sediments in the southernmost Ryukyu Subduction Zone, we have re-processed five large-offset multi-channel seismic sections from the TAIwan GEodynamics Research program (TAIGER). The P-wave velocity model was derived by pre-stack depth migration (PSDM) technique. The status of consolidation residual velocity model in the study area was furthered corrected by using normal consolidation velocity model. In addition, distributions of porosity and mean effective stress field were estimated by using the physical parameters derived by Ocean Drilling Program (ODP) data in the Nankai Trough.
The results show that an under consolidation, higher porosity and low effective stress field was founded near Taiwan. This high fluid regime becomes narrow gradually far from Taiwan. This indicates that the source of the fluid comes from Taiwan island. The thrust faults in the accretionary prism are easier to slip. East of 122°15 ′E, the under-thrusting sediments become stronger coupling. East of the Guaga Ridge, the under-thrusting sediments are fluid rich as evidenced by occurrence of low frequency earthquakes constrained by previous studies.
關鍵字(中) ★ 琉球隱沒帶
★ 隱沒沉積物
★ 物理性質
★ 長支距多頻道震測
★ 重合前深度移位
關鍵字(英) ★ Ryukyu Subduction Zone
★ Under-thrusting sediment
★ Physical properties
★ Large offset multichannal seismic
★ Pre-stack depth migration
論文目次 中文摘要 i
Abstract ii
致謝辭 iv
目錄 v
圖目錄 vii
表目錄 xi
第一章 緒論 1
1.1 研究區域構造背景介紹 1
1.2 地震與隱沒沉積物物理性質的關係 2
1.3 研究目的 5
第二章 研究方法與資料處理 20
2.1 海上多頻道震測震測作業方式與原理 20
2.2 震源與受波器幾何設定及施測參數 21
2.3 震測資料處理 21
2.3.1 重合後震測資料處理 22
2.3.2 重合前震測資料處理 27
2.4 正常膠結狀態速度模型 28
第三章 震測解釋與沉積物速度模型 43
3.1 測線MGL0906-26A 43
3.2 測線MGL0906-12B 45
3.3 測線MGL0906-30A 47
3.4 測線MGL0906-18N 48
3.5 測線MGL0906-19N 50
第四章 討論 82
4.1 地層孔隙率推估 82
4.1.1 大洋鑽探鑽井資料 82
4.1.2 孔隙率分佈 83
4.2 地層平均有效應力分布 83
4.2.1 平均有效應力計算方式 83
4.2.2 平均有效應力分布 84
4.3 琉球隱沒帶地震活動性 85
第五章 結論 107
參考文獻 108
附錄A 113
參考文獻 Arai, R., T. Takahashi, S. Kodaira, Y. Kaiho, A. Nakanishi, G. Fujie, Y. Nakamura, Y. Yamamoto, Y. Ishihara, and S. Miura, “Structure of the tsunamigenic plate boundary and low-frequency earthquakes in the southern Ryukyu Trench,” Nature Communications, vol. 7, pp. 12255, 2016.
Boetius, A., and E. Suess, “Hydrate Ridge: a natural laboratory for the study of microbial life fueled by methane from near-surface gas hydrates,” Chemical Geology, vol. 205, no. 3-4, pp. 291-310, 2004.
Chen, S.-K., Y.-M. Wu, and Y.-C. Chan, “Episodic slow slip events and overlying plate seismicity at the southernmost Ryukyu Trench,” Geophysical Research Letters, vol. 45, no. 19, pp. 10,369-10,377, 2018.
Chin, S.-J., J.-Y. Lin, Y.-F. Chen, W.-N. Wu, and C.-W. Liang, “Transition of the Taiwan-Ryukyu collision-subduction process as revealed by ocean-bottom seismometer observations,” Journal of Asian Earth Sciences, vol. 128, pp. 149-157, 2016.
Font, Y., C.-S. Liu, P. Schnurle, and S. Lallemand, “Constraints on backstop geometry of the southwest Ryukyu subduction based on reflection seismic data,” Tectonophysics, vol. 333, no. 1-2, pp. 135-158, 2001.
Han, S., N. L. Bangs, S. M. Carbotte, D. M. Saffer, and J. C. Gibson, “Links between sediment consolidation and Cascadia megathrust slip behaviour,” Nature Geoscience, vol. 10, no. 12, pp. 954, 2017.
Hoffman N.W., and Tobin H.J., “An empirical relationship between velocity and porosity for underthrust sediments in the Nankai Trough accretionary prism,” In Mikada H.et al. Proceedings of the Ocean Drilling Program, Scientific results, Vol. 190/196, 2004.
Hyndman, R., G. Moore, and K. Moran, “Velocity, Porosity, and Pore-Fluid Loss from the Nankai Subduction Zone Accretionary Prism1,” In Hill, I.A., Taira, A., Firth, J.V., et al., Proceedings of the Ocean Drilling Program, Scientific results, Vol. 131, pp. 211-220, 1993.
Ito, Y., T. Tsuji, Y. Osada, M. Kido, D. Inazu, Y. Hayashi, H. Tsushima, R. Hino, and H. Fujimoto, “Frontal wedge deformation near the source region of the 2011 Tohoku‐Oki earthquake,” Geophysical Research Letters, vol. 38, no. 7, 2011.
Karig, D. E., and G. Hou, “High‐stress consolidation experiments and their geologic implications,” Journal of Geophysical Research: Solid Earth, vol. 97, no. B1, pp. 289-300, 1992.
Klingelhoefer, F., T. Berthet, S. Lallemand, P. Schnurle, C.-S. Lee, C.-S. Liu, K. McIntosh, and T. Theunissen, “P-wave velocity structure of the southern Ryukyu margin east of Taiwan: Results from the ACTS wide-angle seismic experiment,” Tectonophysics, vol. 578, pp. 50-62, 2012.
Lallemand, S., C.-S. Liu, S. Dominguez, P. Schnürle, and J. Malavieille, “Trench‐parallel stretching and folding of forearc basins and lateral migration of the accretionary wedge in the southern Ryukyus: A case of strain partition caused by oblique convergence,” Tectonics, vol. 18, no. 2, pp. 231-247, 1999.
Lay, T., and H. Kanamori, “An asperity model of large earthquake sequences,” Earthquake Prediction: A International Review, Maurice Ewing Ser., pp. 579–592, 1981.
Lehu, R., S. Lallemand, S.-K. Hsu, N. Babonneau, G. Ratzov, A. T. Lin, and L. Dezileau, “Deep-sea sedimentation offshore eastern Taiwan: facies and processes characterization,” Marine Geology, vol. 369, pp. 1-18, 2015.
Lin, J.-Y., Y.-F. Chen, C.-S. Lee, S.-K. Hsu, C.-W. Liang, Y.-C. Lin, and H.-S. Hsieh, “Strike-slip intraplate earthquakes in the Western Philippine Sea Plate,” Tectonophysics, vol. 608, pp. 499-504, 2013.
Liu, C.-S., S.-Y. Liu, S. E. Lallemand, N. Lundberg, and D. L. Reed, “Digital elevation model offshore Taiwan and its tectonic implications,” Terrestrial, Atmospheric and Oceanic Sciences, vol. 9, no. 4, pp. 705-738, 1998.
Minshull, T., and R. White, “Sediment compaction and fluid migration in the Makran accretionary prism,” Journal of Geophysical Research: Solid Earth, vol. 94, no. B6, pp. 7387-7402, 1989.
Moore, G. F., Taira, A., Klaus, A., & Party, S. S. “Proceedings of the Ocean Drilling Program, initial reports. Integrated Ocean Drilling Program,”, 2001
Mrozowski, C. L., S. D. Lewis, and D. E. Hayes, “Complexities in the tectonic evolution of the West Philippine Basin,” Tectonophysics, vol. 82, no. 1-2, pp. 1-24, 1982.
Obara, K., and A. Kato, “Connecting slow earthquakes to huge earthquakes,” Science, vol. 353, no. 6296, pp. 253-257, 2016.
Ruff, L. J., “Asperity distributions and large earthquake occurrence in subduction zones,” Tectonophysics, vol. 211, no. 1-4, pp. 61-83, 1992.
Satake, K., and Y. Tanioka, “Sources of tsunami and tsunamigenic earthquakes in subduction zones,” Pure and Applied Geophysics, vol. 154, no. 3-4, pp. 467-483, 1999.
Skarbek, R. M., and D. M. Saffer, “Pore pressure development beneath the décollement at the Nankai subduction zone: Implications for plate boundary fault strength and sediment dewatering,” Journal of Geophysical Research: Solid Earth, vol. 114, no. B7, 2009.
Strasser, F. O., M. Arango, and J. J. Bommer, “Scaling of the source dimensions of interface and intraslab subduction-zone earthquakes with moment magnitude,” Seismological Research Letters, vol. 81, no. 6, pp. 941-950, 2010.
Theunissen, T., S. Lallemand, Y. Font, S. Gautier, C.-S. Lee, W.-T. Liang, F. Wu, and T. Berthet, “Crustal deformation at the southernmost part of the Ryukyu subduction (East Taiwan) as revealed by new marine seismic experiments,” Tectonophysics, vol. 578, pp. 10-30, 2012.
Tsuji, T., R. Kamei, and R. G. Pratt, “Pore pressure distribution of a mega-splay fault system in the Nankai Trough subduction zone: Insight into up-dip extent of the seismogenic zone,” Earth and Planetary Science Letters, vol. 396, pp. 165-178, 2014.
Wang, S.-Y., S.-K. Hsu, and Y.-C. Yeh, “Earthquake‐related structures beneath the southernmost portion of the Ryukyu arc and forearc,” Geophysical Research Letters, 2019.
Wang, T.-K., K. McIntosh, Y. Nakamura, C.-S. Liu, and H.-W. Chen, “Velocity-interface structure of the southwestern Ryukyu subduction zone from EW9509-1 OBS/MCS data,” Marine Geophysical Researches, vol. 22, no. 4, pp. 265-287, 2001.
Yilmaz, Ö., Seismic data analysis: Processing, inversion, and interpretation of seismic data: Society of exploration geophysicists, 2001.
Yu, S.-B., H.-Y. Chen, and L.-C. Kuo, “Velocity field of GPS stations in the Taiwan area,” Tectonophysics, vol. 274, no. 1-3, pp. 41-59, 1997.
卓彥宇,利用2009年石垣島餘震資料探討琉球隱沒帶的地體構造,國立臺灣海洋大學應用地球科學研究所碩士論文,共77頁,2012。
蘇怡璇,由海底地震儀資料探討宜蘭外海琉球隱沒帶之地震地體構造,國立中央大學地球科學系碩士論文,共117頁,2014。
指導教授 葉一慶(Yi-Ching-Yeh) 審核日期 2019-7-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明