博碩士論文 103240002 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:65 、訪客IP:18.191.222.143
姓名 胡巨峰(Chu-Feng Hu)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 以GATE模型及系統矩陣演算法重建SPECT螺旋影像
(Helical SPECT Image Reconstruction by GATE Modeling and System Matrix Generation Algorithm)
相關論文
★ LED檯燈視覺舒適度研究★ 表面電漿共振系統之相位擷取與分析
★ 人眼眼球模型與視覺表現之模擬分析研究★ 白光LED之視覺生理效應評估
★ 不同色溫螢光燈用於辦公室照明之視覺效應研究★ 表面電漿共振儀之動態相位偵測技術 與微量生物分子檢測應用
★ 二次通過成像架構量測人眼的光學系統品質★ 週期性奈米金屬結構對拉曼散射訊號增強之研究
★ 日眩光要因分析研究★ 非球面檢測之迭代相移干涉與子孔徑相位接合演算法開發
★ 應用可容忍隨機位移之相移干涉術於相位式表面電漿共振系統之穩定度增進★ 以偵測任務及系統效能評估找尋多針孔微單光子放射電腦斷層掃描系統之最佳化配置
★ 結合表面電漿共振及溫度控制於免疫球蛋白鍵結之檢測分析★ 以二次通過成像量測架構及降低誤差迭代演算法重建人眼之點擴散函數
★ 多陽極光電倍增管閃爍相機之訊號讀出系統與高效最大可能性位置估算演算法開發★ 小動物針孔單光子放射電腦斷層掃描系統之系統校正與配置最佳化
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 單光子放射電腦斷層掃描(SPECT)藉由放射性核種所釋放出的光子進行影像採集,本研究使用GATE (Geant4 Application for Tomographic Emission)模擬核子醫學影像系統,建構Micro-SPECT系統。設計上先行制定系統放大率、針孔位置、針孔數量、針孔型態、孔徑開放角參數、閃爍晶石參數建構、視域範圍設計、熱桿假體三區圓柱直徑大小及桿長參數制定,及使用核種活度及能量,通過GATE蒙地卡羅方法(Monte Carlo method) 取得冠狀軸和橫軸與螺旋橫軸三種假體軸面投影影像,後續建立H系統矩陣透過GATE粗略格點掃描取得點射源在不同三維位置的投影影像,並取得個別射源二維高斯參數化成像特性,再由距離權重高斯內插法建立完整的影像系統矩陣,搭配GATE模擬三種假體軸面投影影像,影像重建使用序列子集期望值最大化演算法(Ordered Subset Expectation Maximization, OSEM)結合圖形處理器(Graphics Processing Unit) CUDA(Compute Unified Device Architecture)架構,可將單一指令送交多個執行緒同時進行處理,具平行化優勢可大幅降低運算時間,最後比較三種軸面三維重建影像活度分佈優劣呈現。
摘要(英) The single photon emission computed tomography (SPECT) acquires the photons emitted by radionuclides to form the images of radioactivity distribution. This research employs GATE (Geant4 Application for Tomographic Emission), a Monte Carlo simulation tool for nuclear medicine imaging systems, to construct a micro-SPECT system.
The system design starts from setting the magnification, the number of pinholes, pinhole locations, pinhole opening geometry, scintillator dimensions, the field of view (FOV), the hot-rod diameters and lengths of the resolution phantom, and the radioactivity and energy of the radionuclide. The coronal and transaxial projections of the hot-rod phantom are then generated for circular and helical trajectories via GATE modeling.
The imaging system matrix required for image reconstruction is generated in three steps. Firstly, a radioactive point source is scanned on a coarse 3D grid to obtain the point response functions (PRFs) in the FOV of the imaging system through GATE modeling. Secondly, each PRF is fitted by a 2D Gaussian function with six parameters. A complete imaging system matrix on a finer grid is then generated by distance-weighted Gaussian interpolation method.
The image reconstruction utilizes the complete system imaging matrix to reconstruct three projection image sets of the resolution phantom, including circular coronal projections, circular transaxial projections and helical transaxial projections. The reconstruction algorithm is the Ordered Subset Expectation Maximization (OSEM) implemented using the Graphics Processing Unit (GPU) in the Compute Unified Device Architecture (CUDA), which enables parallel computing to greatly reduce the computation time. The slices of the reconstructed 3D images are compared in their radioactivity distributions and image quality.
關鍵字(中) ★ 單光子放射電腦斷層掃描
★ 影像重建使用序列子集期望值最大化演算法
★ 針孔準直儀
★ 系統空間解析度
★ 系統靈敏度
★ 模擬核子醫學影像系統
關鍵字(英) ★ Single Photon Emission Computed Tomography
★ Ordered Subset Expectation Maximization
★ Pinhole Collimator
★ System Spatial Resolution
★ System Sensitivity
★ Geant4 Application for Tomographic Emission
論文目次 中文摘要 i
Abstract vi
致謝 viii
目 錄 ix
圖目錄 xii
表目錄 xviii
第一章 緒論 1
1.1 前言 1
1.2 研究目的 2
1.3 論文架構 3
第二章 核醫影像系統與平行運算背景介紹 5
2.1 核子醫學影像簡介 5
2.1.1 正子放射斷層掃瞄系統(PET) 5
2.1.2 單光子放射斷層掃瞄系統(SPECT) 9
2.2 螺旋式斷層掃瞄系統螺距限制 17
2.2.1平行光束電腦斷層掃描(Parallel-Beam CT) 18
2.2.2扇形光束電腦斷層掃瞄系統(Fan-Beam CT) 19
2.2.3錐束電腦斷層掃瞄系統(Cone-Bean CT) 21
2.2.4針孔式單光子電腦斷層掃瞄系統(Pinhole SPECT) 22
2.3 GPU圖形處理器 22
2.4 CUDA架構編譯系統 25
2.4.1核心函數(Kernel Function) 26
2.4.2圖形處理器記憶體 29
2.4.3 NVCC編譯器 33
2.5 NVIDIA Tesla C2075 韌體架構 35
2.6模擬軟體-GATE 37
第三章 影像系統環境建立 40
3.1 針孔參數簡介 40
3.1.1 制定系統放大率及針孔位置 40
3.1.2 針孔數量制定 42
3.1.3 針孔參數的制定 43
3.2 電腦設備及作業系統環境 47
3.3針孔單光子放射電腦斷層掃描儀及模擬建立 47
3.3.1圓軌投影影像 51
3.3.2螺旋軌投影影像 53
第四章 建立影像系統特性之H矩陣法 55
4.1影像系統矩陣 55
4.2投影重心模型 55
4.3格點掃描演算法 57
4.4二維高斯函數影像參數化 58
4.5 距離權重高斯內插法 (distance-weighted Gaussian interpolation) 58
4.6 圓軌與螺旋軌系統矩陣建立 60
第五章 影像重建運算平行化及演算法 62
5.1最大可能性期望值最大化演算法(Maximum Likelihood Expectation Maximization,MLEM) 62
5.2序列子集期望值最大化演算法(Ordered Subset Expectation Maximization, OSEM) 65
5.3 圖形處理(GPU)應用於影像重建演算法 67
5.4 動態平行運算(Dynamic Parallelism)用於影像重建演算法 68
5.5正向投影建立核心函數 68
5.6反向投影建立核心函數 71
5.7圓軌跡影像重建結果 73
5.8螺旋軌跡影像重建結果 80
第六章 結論 84
參考文獻 86
參考文獻 [1] S. Batzoglou, L. Pachter, J. P. Mesirov, B. Berger and E. S. Lander, “Human and Mouse Gene Structure: Comparative Analysis and Application to Exon Prediction,” Genome Res., vol. 10, no. 7, pp. 950-958, 2000.
[2] M. N. Wernick, and J. N. Aarsvold, The Fundamentals of PET and SPECT, ELSEVIER Academic Press, 2004.
[3] P. D. Acton and H. F. Kung, “Small animal imaging with high resolution single photon emission tomography,” Nucl. Med. Biol., vol. 30, no. 8, pp. 889-895, 2003.
[4] B. M. W. Tsui, Y. C. Wang, B. C. Yoder and E. C. Frey, “MICRO-SPECT,” Bio. Imag. IEEE Symp. pp. 373-376, 2002.
[5] Available : http://www.cmr-naviscan.com/lumagem/
[6] A. B. Hwang, B. L. Franc, G. T. Gullberg, and B. H. Hasegawa, “Assessment of the sources of error affecting the quantitative accuracy of SPECT imaging in small animals,” Phys. Med. Biol., vol. 53, no. 9, pp. 2233-2252, 2008.
[7] Available : https://sites.google.com/site/cboatpetct/home/fulltext
[8] Available : https://zh.m.wikipedia.org/zh-tw/%E6%AD%A3%E5%AD%90%E6%96%B7%E5%B1%A4%E7%85%A7%E5%BD%B1
[9] Y. C. Chen, System Calibration and Image Reconstruction for a New Small-Animal SPECT System, PhD dissertation, University of Arizona, 2006
[10] Available : http://home.ee.ntu.edu.tw/classnotes/bme/NMWhiteBkd.pdf
[11] Available : https://wwwfs.vghks.gov.tw/Download.ashx?u=LzAwMS9WZ2hrc1VwbG9hZEZpbGVzLzMyMy9ja2ZpbGUvOTk5NmFiMWMtMjI2Ni00Mjg5LTg3OGUtNTE1ZWI2NDQ5ZmE1LnBkZg%3D%3D&n=5qC45a2Q6Yar5a245YSA5Zmo5qeL6YCg6IiH5Y6f55CGLeW8teaYpeaiheaUvuWwhOW4qy5wZGY%3D

[12] Available : https://www.twblogs.net/a/5c59bdafbd9eee06ef36b041
[13] Available : https://zh.wikipedia.org/wiki/File:Photomultipliertube.svg
[14] Available : https://www1.cgmh.org.tw/intr/intr5/c63f00/123/%E5%AF%A6%E7%BF%92%E7%94%9F/%E6%A0%B8%E9%86%AB%E9%96%83%E7%88%8D%E6%94%9D%E5%BD%B1%E6%A9%9F-2011.pdf
[15] Available : https://www.hamamatsu.com/us/en/product/type/H8500C/index.html
[16] G. L. Zeng, G. T. Gullberg, “Helical SPECT using axially truncated data,” IEEE Sci. vol. 46, no. 6, pp. 2111 – 2118, 1999
[17] Available : https://www.qixieke.com/Font/index/detailPage.html?id=656-10
[18] Available : https://read01.com/zh-tw/Ax3Aaj.html#.XQWd3bwzY2x
[19] Available : https://slidesplayer.com/slide/14574034/
[20] Available :
https://cg2010studio.com/2011/10/04/cpu%E8%88%87gpu%E7%9A%84%E6%9E%B6%E6%A7%8B%E4%B9%8B%E6%83%B3%E6%B3%95/
[21] Available : http://www.dmst.org.tw/e-paper/16/001a.html
[22] Available : https://blogs.nvidia.com.tw/2012/09/what-is-cuda-2/
[23] Available : https://kheresy.wordpress.com/2013/12/03/unified-memory-in-cuda-6/
[24] Available : https://zhuanlan.zhihu.com/p/34587739
[25] Available :https://www.ce.jhu.edu/dalrymple/classes/602/Class10.pdf
[26] Available : https://blog.csdn.net/junparadox/article/details/50540602
[27] https://read01.com/LdN70.html#.XRzzjOgzY2x
[28] Available : https://blog.csdn.net/shungry/article/details/89715468
[29] Available : https://www.techpowerup.com/gpu-specs/tesla-c2075.c563
[30] Available : https://www.techbang.com/posts/17196-efficiency-priority-nvidia-maxwell-schema-core-group-scatters-rearrangement-process-no-change-order-in-advance
[31] G. Santin, D. Strul, D. Lazaro, L. Simon, M. Krieguer, M.Vieira Martins, V. Breton, and C. Morel, “GATE: a Geant4-based simulation platform for PET and SPECT integrating movement and time management,” IEEE Trans. Nucl. Sci., vol. 50, no. 5, pp. 1516 – 1521, 2003.
[32] S.Agostinelli et al., “Geant4—a simulation toolkit,” Nucl. Instr. Meth., vol. 506, no. 3, 1 pp. 250-303, 2003.
[33] Available : http://wiki.opengatecollaboration.org/index.php/Users_Guide:Introduction
[34] 林威佐,「以偵測任務及系統效能評估找尋多針孔微單光子放射電腦斷層掃描系統之最佳化配置」,國立中央大學,碩士論文,民國102年。
[35] P. Nillius and M. Danielsson, “Theoretical Bounds and System Design for Multipinhole SPECT,” IEEE Trans. Med. Imag., vol. 29, no. 7, pp. 1390 – 1400, 2010.
[36] S. Shokouhi, S. D. Metzler, D. W. Wilson, and T. E. Peterson, “Multi-pinhole collimator design for small-object imaging with SiliSPECT: a high-resolution SPECT,” Phys. Med. Biol., vol. 54, no. 2, pp. 207–225, 2009.
[37] W. C. J. Hunter, Modeling Stochastic Processes in Gamma-Ray Imaging Detectors and Evaluation of a Multi-Anode PMT Scintillation Camera for Use with Maximum-Likelihood Estimation Methods, Ph.D Dissertations, University of Arizona, 2007.
[38] Available : https://zh.scribd.com/document/327626472/Iprd02-Gate
[39] M. W. Lee and Y. C. Chen, “Rapid construction of pinhole SPECT imaging system Matrices by Gaussian Interpolation Method combined with Geometric Parameter Estimations,” IEEE Nucl. Sci. Symp. Conf. Rec. 2011, pp. 2664 – 2667, 2011.
[40] W. T. Lin, Configuration Optimization for Multi-pinhole Micro-SPECT System by Detection Tasks and System Performance Evaluations, Master thesis, National Central University, 2013.
[41] L. A. Shepp and Y. Vardi, “Maximum likelihood reconstruction for emission tomography,” IEEE Trans. Med. Imag., vol. 1, no. 2, pp.113-122, 1982.
[42] H. H. Barrett and K. J. Myers, Foundations of Image Science, Wiley-Interscience, Hoboken, NJ, pp.801-1000, 2004.
[43] H. M. Hudson and R. S. Larkin, “Accelerated image reconstruction using ordered subsets of projection data,” IEEE Trans. Med. Imag., vol. 13, no. 4, pp. 601-609, 1994.
[44] D. S. Lalush and B. M. W. Tsui, “Performance of ordered-subset reconstruction algorithms under conditions of extreme attenuation and truncation in myocardial SPECT,” J. Nucl. Med., vol. 41, no. 4, pp. 737-744, 2000
[45] J. Ye, X. Song, M. K. Durbin, M. Zhao, M .S. L. Shao, J. Garrard, B.A., C.N.M.T. and F. D. Rollo, M.D, SPECT image quality improvement with Astonish software, Philips Medical Systems Nuclear Medicine Milpitas, CA, 2010.
[46] 陳承穎,「基於圖形處理器進行微單光子放射電腦斷層掃描系統之位置估算與影像重建演算法開發」,國立中央大學,碩士論文,民國103年。
指導教授 陳怡君 審核日期 2019-8-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明