博碩士論文 106329023 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:26 、訪客IP:3.144.4.177
姓名 陳勉中(Mian-Chung Chen)  查詢紙本館藏   畢業系所 材料科學與工程研究所
論文名稱 高含量Ti、B對A201-T7鋁合金熱裂性、微結構與機械性質的影響
(Effect of high Ti and B content on the hot tearing, microstructure and mechanical properties of A201-T7 aluminum alloys)
相關論文
★ 元素揮發對Mg-Ni-Li合金儲放氫特性之影響★ 以超臨界流體製備金屬觸媒/奈米碳管複合材料並探討其添加對氫化鋁鋰放氫特性的影響
★ LaNi5對Mg2Ni合金電極性質之影響★ 固溶處理之冷卻速率對SP-700鈦合金微結構與機械性質之影響
★ Pb含量與熱處理對AgPb18+xSbTe20合金熱電性質影響之探討★ 鈧對Al-7Si-0.6Mg合金機械性質影響
★ 以超臨界流體製備石墨烯/金屬複合觸媒並 探討其添加對氫化鋁鋰放氫特性的影響★ 高壓氫壓縮機用之儲氫合金開發
★ 固溶處裡對SP-700鈦合金微結構及機械性質之影響★ 微量鋯與安定化退火對Al-4.7Mg-0.75Mn 合金腐蝕與機械性質之影響
★ 微量Ni對Al-4.5Cu-0.3Mg-0.15Ti合金熱穩定性之影響★ 微量Zr與冷加工對Al-4.7Zn-1.6Mg合金淬火敏感性之影響
★ 微量Zr和Sc與均質化對Al-4.5Zn-1.5Mg合金機械性質與再結晶之影響★ 改良劑(鍶、銻)與熱處理對Al-11Si-3Cu-0.5Mg合金微結構及磨耗性質之影響
★ 以濕蝕刻法於可撓性聚亞醯胺基板製作微通孔之研究★ 固溶處理對Al-9.0Zn-2.3Mg-xCu合金機械性質與腐蝕性質之影響
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 摘要

本研究藉由熱裂測試、光學顯微鏡(OM)、電子微探儀(EPMA)、導電度(%IACS)、機械性質(硬度、拉伸)試驗等,探討高含量Ti(3.0wt%)、B(1.4wt%)對高強度鑄造A201 (Al-4.5Cu-0.7Ag-0.3Mg) 合金之鑄造熱裂性、微結構、與機械性質之影響。
結果顯示,由於高含量Ti(3.0wt%)、B(1.4wt%)的添加,細化了鑄態合金晶粒,平均尺寸由105μm下降至45μm,且於鋁基地中生成TiB2、Al3Ti等中間相。當進行過時效處理(T7)後,合金強度與硬度約為418MPa與83HRB,相較於未改質合金,分別提升了7.1%與15%。顯示中間相雖具有散佈強化合金之效果,但對於添加高Ti、B的熱處理型A201合金而言,其提升強度與硬度仍屬有限。
藉由熱裂模具分析鑄造性後,發現合金抗熱裂性顯著提升,試棒完好數量由零根增加至三根,裂縫形貌由完全斷裂轉為細小裂縫。另外,相較於單獨添加,若同時添加Ti、B於合金中,由於極低膨脹係數的TiB2中間相生成之緣故,使合金具有最佳的鑄造性。



關鍵字: 鋁銅合金、鋁鈦硼中間相、低熱膨脹係數、抗熱裂性

摘要(英) Abstract

This research presents the effect of high Ti (3.0wt%) and B (1.4wt%) content on the hot tearing, microstructure and mechanical properties of high strength A201(Al-Cu-Ag-Mg) aluminum alloys, the analyzed methods including hot tearing test, optical microscope (OM), electron probe micro analyzer (EPMA), electrical conductivity meter (% IACS), tensile test...ellipses.
The results showed the average grain size of as-cast state alloys decreased from 105μm to 45μm due to high Ti (3.0wt%) and B (1.4wt%) added. Besides, the intermetallic compounds such as TiB2, Al3Ti formed in the Al-Matrix. Compared to unmodified alloys, the tensile strength and hardness of high Ti and B content alloys increased about 7.1% and 15% after T7 heat treatment, up to 418MPa and 83HRB. Showed the improvements of mechanical properties on high Ti and B content heat-treatable A201 alloys was slight, although the intermetallic compounds had dispersion strengthening effect.
Castability was analyzed by hot tearing molds and the results showed the resistance of hot tearing improved significantly. The amount of unbroken test bar of modified alloys is three while the un-modified alloys is zero. The hot cracks morphology also indicated the resistance of hot tear improved with the addition of high Ti and B. Besides, compared to add Ti or B lonely, the alloys has the best castability while Ti and B were added together. That’s because the formation of the intermetallic compounds TiB2 which has low thermal expansion coefficient can improve the hot tearing resistance.


Keywords: Al-Cu alloy, intermetallic compounds, low thermal expansion coefficient, hot tearing resistance
關鍵字(中) ★ 鋁銅合金
★ 鋁鈦硼中間相
★ 低熱膨脹係數
★ 抗熱裂性
關鍵字(英) ★ Al-Cu alloy
★ intermetallic compounds
★ low thermal expansion coefficient
★ hot tearing resistance
論文目次 總目錄

中文摘要.......................................Ⅰ
英文摘要.......................................Ⅱ
誌謝..........................................Ⅲ
總目錄........................................Ⅳ
圖目錄........................................Ⅵ
表目錄........................................Ⅶ

一.前言與文獻回顧................................1
1.1 A201鋁合金簡介…..........................1
1.1.1 鋁合金簡介.........................1
1.1.2 A201鋁銅合金發展與性質..............2
1.1.3 A201鋁合金之應用與..................4
1.1.4 A201鋁合金的熱處理..................4
1.2 鑄造熱裂簡介..............................6
1.2.1 熱裂簡介............................6
1.2.2 影響熱裂的因素.......................6
1.3 Al-Ti-B 系統與金屬化合物...................9
1.3.1 Al3Ti中間相........................10
1.3.2 AlB2 與TiB2 中間相..................11
1.4 中間相於熔融鋁中的製備.................... 13
1.4.1 In-situ與Ex-Situ添加法.................13
1.4.2母合金添加法............................13
1.4.3中間相的生成效率........................15
1.5 研究背景與目的...........................16
二.實驗方法與步驟...............................17
2.1合金設計與熔配..............................18
2.2 Al-Ti-B中間相生成量分析............19
2.3固溶(均質化)、時效熱處理.................21
2.4 X光繞射分析................................21
2.5微結構觀察與分析.....................21
2.5.1 光學顯微鏡............................21
2.5.2 電子微探儀......................22
2.5.3 導電度量測.............22
2.6機械性質分析......................23
2.6.1 硬度試驗.................23
2.6.2 拉伸試驗...............23
2.7 熱裂模具分析....................23
三.結果與討論...............................25
3.1 Al-Ti-B中間相含量與種類......25
3.2微結構觀察與分析.............28
3.2.1 光學顯微鏡觀察........28
3.2.2 電子微探分析.........31
3.2.3 導電度量測.............35
3.3 機械性質分析....................37
3.3.1 硬度分析..................37
3.3.2 拉伸試驗.................39
3.4 熱裂分析............................40
四.結論.......................................43
五.未來研究方向................................44
六.參考資料....................................45
參考文獻 參考文獻

[ASM1] J. R. Davis & Associates, “ASM Specialty Handbook: Aluminum and Aluminum Alloys”, ASM International Materials Park, P.3 (1994)

[ASM2] J. R. Davis & Associates, “ASM Specialty Handbook: Aluminum and Aluminum Alloys”, ASM International Materials Park, P.4 (1994)

[ASM3] J. R. Davis & Associates, “ASM Specialty Handbook: Aluminum and Aluminum Alloys”, ASM International Materials Park, P.3 (1994)

[ASM4] J. R. Davis & Associates, “ASM Specialty Handbook: Aluminum and Aluminum Alloys”, ASM International Materials Park, P.4 (1994)

[ASM5] J. R. Davis & Associates, “ASM Specialty Handbook: Aluminum and Aluminum Alloys”, ASM International Materials Park, P.5 (1994)

[ASM6] J. R. Davis & Associates, “ASM Specialty Handbook: Aluminum and Aluminum Alloys”, ASM International Materials Park, P.41 (1994)

[ASM7] J. R. Davis & Associates, “ASM Specialty Handbook: Aluminum and Aluminum Alloys”, ASM International Materials Park, P.20 (1994)

[ASM8] J. R. Davis & Associates, “ASM Specialty Handbook: Aluminum and Aluminum Alloys”, ASM International Materials Park, P.25 (1994)

[ASM9] J. R. Davis & Associates, “ASM Specialty Handbook: Aluminum and Aluminum Alloys”, ASM International Materials Park, P.718 (1994)

[ASM10] J. R. Davis & Associates, “ASM Specialty Handbook: Aluminum and Aluminum Alloys”, ASM International Materials Park, P.706-707 (1994)

[ASM11] J. R. Davis & Associates, “ASM Specialty Handbook: Aluminum and Aluminum Alloys”, ASM International Materials Park, P.309-313 (1994)

[ASM12] J. R. Davis & Associates, “ASM Specialty Handbook: Aluminum and Aluminum Alloys”, ASM International Materials Park, P.582 (1994)

[ASM13] J. R. Davis & Associates, “ASM Specialty Handbook: Aluminum and Aluminum Alloys”, ASM International Materials Park, P.706 (1994)

[ASM14] Okamoto H., “Phase Diagrams of Dilute Binary Alloys”, ASM International Materials Park, P.308 (2002)

[ASTM1] ASTM B557-15, Standard Test Methods for Tension Testing Wrought and Cast Aluminum and Magnesium Products (2019)

[ASTM2] ASTM E112, Standard Test Methods for Determining Average Grain Size (2019)

[BIC] Bichler, “Influence of Mold and Pouring Temperatures on Hot Tearing Susceptibility of AZ91D Magnesium Alloy”, International Journal of Metal casting, Vol.2 (1), PP. 43-54 (2008)

[CAM] Campbell, “Castings”, Oxford: Butterworth-Heinemann, P.50 (1991)

[CHE] R. J. Chester, “TEM Investigation of Precipitates in Al-Cu-Mg-Ag and Al-Cu-Mg Alloys”, Micron, Vol.11, PP.311-312 (1980)

[CHE2] Z. Chen, “Microstructure and properties of in situ Al/TiB2 composite fabricated by in-melt reaction method”, Metallurgical and Materials Transactions A, Vol.31 (8), PP.1959-1964 (2000)

[EMA] M. Emamy, M. Mahta and J. Rasizadeh, “Formation of TiB2 particles during dissolution of TiAl3 in Al–TiB2 metal matrix composite using an in situ technique”, Composites Science and Technology, Vol.66, PP.1063–1066 (2006)

[FAN] Fan. T, Yang. G, “Thermodynamic effect of alloying addition on insitu reinforced TiB2/Al composites”, Metallurgical and Materials Transactions A, Vol.36 (1), PP.225-233 (2005)

[FEN] Feng. C and Froyen. L, “Microstructures of in situ Al/TiB2 MMCs prepared by a casting route”, Journal of materials Science, Vol.35 (4), PP.837-850 (2000)

[GAO] Q. Gao, S. Wu, S. Lü, X. Duan, Z. Zhong, “Preparation of in-situ TiB2 and Mg2Si hybrid particulates reinforced Al-matrix composites”, Journal of Alloys and Compounds, Vol.651, PP.521-527 (2016)

[GCH] G. Chen, Y. Jin, H. Zhang, F. Han, Q. Chen, J. Xu, Z. Zhao, “Microstructures and mechanical properties of in-situ Al3Ti/2024Al composites after solution and subsequent aging treatment”, Material Science and Engineering:A ,Vol.724, PP.181-188 (2018)

[GEN] Jiwei Geng, Gen Liu, “Tuning the microstructure features of in-situ nano TiB2/Al-Cu-Mg composites to enhance mechanical properties”, Journal of Alloys and Compounds, Vol.775, PP.193-201 (2019)

[HON] K. Hono, N. Sano and T. Sakurai, “Atom Probe Study of the Precipitation Process in Al-Cu-Mg-Ag Alloys”, Acta Metall. Mater., Vol.41, PP.829-838 (1993)

[JAV] A. Javadi, C. Cao and X. Li, “Manufacturing of Al-TiB2 Nanocomposites by Flux-Assisted Liquid State Processing”, Procedia Manufacturing, Vol.10, PP.531-535 (2017)

[JHL] Jin Hao Lai, Effect of TiB2 on the mechanical, casting properties and microstructure of A201 alloys, National Central University, The Degree of Master of Mechanical Engineering (2018)

[KAR] M. Karbalaei Akbari, H. R. Baharvandi and K. Shirvanimoghaddam, “Tensile and fracture behavior of nano/micro TiB2 particle reinforced casting A356 aluminum alloy composites”, Materials and Design, Vol.66, PP.150-161 (2015)

[KNO] K.M.Knowles and W. M. Stobbs, “The Structure of{100}Age-hardening Precipitates in Al-Cu-Mg-Ag Alloys”, Acta Cryst, Vol.44, PP.207-227 (1993)

[LAK] Lakshmi, “In situ preparation of TiB2 reinforced Al based composites”, Materials Processing Technology, Vol.73 (1), PP.160-166 (1998)

[LI] S. Li, K. Sadayappan and D. apelian, “Role of Grain Refinement in the Hot Tearing of Cast Al-Cu Alloy”, Metallurgical And Materials Transacions, Vol.44, PP.614-623 (2013)

[MAN] A. Mandal, R. Maiti, M. Chakraborty and B. S. Murty, “Effect of TiB2 particles on aging response of Al–4Cu alloy”, Materials Science and Engineering: A, Vol.386, PP.296–300 (2004)

[MAT] F. Matsuda, K. Nakata, and Y. Shimokusu, “Effect of additional element on weld solidification crack susceptibility of Al-Zn-Mg alloy”, Transactions of JWR, Vol.12, PP.81–87 (1983)

[MUN] R.G. Munro, “Material Properties of Titanium Diboride”, National Institute of Standards and Technology, Vol.105, PP.709-720 (2000)

[MUR] B.S. Murty, S.A. Kori, M. Chakrabort, “Grain refinement of aluminum and its alloys by heterogeneous nucleation and alloying”, Int. Mater. Rev. 47, PP.3-29 (2002)

[MUR2] J. L. Murray, P. K. Liao, K. E. Spear, “The B-Ti System, Bulletin of Alloy Phase Diagrams”, Vol.7, PP.550-555 (1986)

[NAB] Nabawy A. M., Chen X. G., “Fabrication of Al−TiB2 nanocomposites by flux-assisted melt stirring”, Metal Mater Trans B, Vol.46, PP.1596−1602 (2015)

[OSM1] Osman S., “A Study on the Production and Properties of In-Situ Titanium Diboride Particulate Reinforced Aluminum A356 Alloy Composite”, Middle East Technical University, The Degree Of Master Of Science (2011)

[OSM2] Osman S., “A Study on the Production and Properties of In-Situ Titanium Diboride Particulate Reinforced Aluminum A356 Alloy Composite”, Middle East Technical University, The Degree Of Master Of Science (2011)

[PEL] Pellini, W. S., “Strain Theory of Hot Tearing”, Foundry, Vol.80, PP.125-199 (1952)

[POL] I. J. Polmear, G. Pons, Y. Barbaux, H. Octor, C. Sanchez, A. J. Morton, W. E. Borbidge and S. Rogers, “Evaluation of creep resistant Al-Cu-Mg-Ag Alloys”, Materials Science and Technology, Vol.15, PP.861-868 (1999)

[RAM] C.S. Ramesh, Abrar Ahamed , B.H. Channabasappa, R. Keshavamurthy , “Development of Al 6063–TiB2 in situ composites, Materials and Design”, Vol.31, PP.2230–2236 (2010)

[REI] L. Reich, M. Murayama and K. Hono, “Evolution of Ω Phase in an Al-Cu-Mg-Ag Alloy – A Three-Dimensional Atom Probe Study”, Acta Materialia, Vol.46, No.17, PP.6053-6062 (1998)

[ROS] R.A. Rosenberg, M.C. Flemings and H.F. Taylor, “Nonferrous Binary Alloys Hot-Tearing”, AFS Trans, Vol.69, PP.518-528 (1960)

[SIM] Siming Ma, “Mechanical properties and fracture of in-situ Al3Ti particulate reinforced A356 composites”, Material Science and Engineering: A, Vol.754, PP.46-56 (2019)

[SHI] Shimi Li, “Hot Tearing in Cast Aluminum Alloys: Measures and Effects of Process Variables”, Worcester Polytechnic Institute, Degree of Doctor of Philosophy in Materials Science and Engineering (2010)

[SAV] Saveiko, V. N., “Theory of Hot Tearing, Russian Castings Production”, Vol.11, PP.453-456 (1961)

[TEE] K. Tee, L. Lu and M. Lai, “In situ stir cast Al–TiB2 composite: processing and mechanical properties”, Materials science and technology, Vol.17 (2), PP.201-206 (2001)
[WIT] V.T. Witusiewicz, Thermodynamic Description of the Ternary System Al-B-Ti, J. Alloys Compound, Vol.474, PP.86-104 (2009)

[ZIC] Zichuan Lu, Fengchun Jiang, “Multi-phase intermetallic mixture structure effect on the ductility of Al3Ti Alloy”, Material Science and Engineering: A, Vol.721, PP.274-285 (2018)
指導教授 李勝隆(Shen-Long Lee) 審核日期 2019-7-11
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明