參考文獻 |
[1] J.M. Tarascon, Is lithium the new gold?, Nature Chemistry, 2010, 2, 510.
[2] B.L. Ellis, L.F. Nazar, Sodium and sodium-ion energy storage batteries, Current Opinion in Solid State and Materials Science, 2012, 16, 168.
[3] S.Y. Hong, Y. Kim, Y. Park, A. Choi, N.S. Choi, K.T. Lee, Charge carriers in rechargeable batteries: Na ions vs. Li ions, Energy & Environmental Science, 2013, 6, 2067.
[4] N. Yabuuchi, K. Kubota, M. Dahbi, S. Komaba, Research development on sodium-ion batteries, Chemical Reviews, 2014, 114, 11636.
[5] A. Ponrouch, E. Marchante, M. Courty, J.M. Tarascon, M.R. Palacín, In search of an optimized electrolyte for Na-ion batteries, Energy & Environmental Science, 2012, 5, 8572.
[6] Y. Kim, K.H. Ha, S.M. Oh, K.T. Lee, High-capacity anode materials for sodium-ion batteries, Chemistry, 2014, 20, 11980.
[7] V. Palomares, P. Serras, I. Villaluenga, K.B. Hueso, J. Carretero-González, T. Rojo, Na-ion batteries, recent advances and present challenges to become low cost energy storage systems, Energy & Environmental Science, 2012, 5, 5884.
[8] V. Palomares, M. Casas-Cabanas, E. Castillo-Martínez, M.H. Han, T. Rojo, Update on Na-based battery materials. A growing research path, Energy & Environmental Science, 2013, 6, 2312.
[9] M.M. Doeff, Y. Ma, S.J. Visco, L.C.D. Jonghe, Electrochemical insertion of sodium into carbon, Journal of the Electrochemical Society, 1993, 140, 169.
[10] P. Ge, M. Fouletier, Electrochemical intercalation of sodium in graphite, Solid State lonics, 1988, 28-30, 1172.
[11] A.K. Geim, K.S. Novoselov, The rise of graphene, Nature Materials, 2007, 6, 183.
[12] X.F. Luo, C.H. Yang, Y.Y. Peng, N.W. Pu, M.D. Ger, C.T. Hsieh, J.K. Chang, Graphene nanosheets, carbon nanotubes, graphite, and activated carbon as anode materials for sodium-ion batteries, Journal of Materials Chemistry A, 2015, 3, 10320-10326.
[13] X.F. Luo, C.H. Yang, J.K. Chang, Correlations between electrochemical Na+ storage properties and physiochemical characteristics of holey graphene nanosheets, Journal of Materials Chemistry A, 2015, 3, 17282.
[14] R. Raccichini, A. Varzi, S. Passerini, B. Scrosati, The role of graphene for electrochemical energy storage, Nature Materials, 2015, 14, 271.
[15] K.S. Novoselov, V.I. Fal′ko, L. Colombo, P.R. Gellert, M.G. Schwab, K. Kim, A roadmap for graphene, Nature, 2012, 490, 192.
[16] W.S. Hummers, R.E. Offeman, Preparation of graphitic oxide, Journal of American Chemical Society, 1958, 80, 1339.
[17] H.L. Poh, F. Sanek, A. Ambrosi, G. Zhao, Z. Sofer, M. Pumera, Graphenes prepared by Staudenmaier, Hofmann and Hummers methods with consequent thermal exfoliation exhibit very different electrochemical properties, Nanoscale, 2012, 4, 3515.
[18] P.A. Denis, F. Iribarne, Comparative study of defect reactivity in graphene, The Journal of Physical Chemistry C, 2013, 117, 19048.
[19] M.M. Islam, C.M. Subramaniyam, T. Akhter, S.N. Faisal, A.I. Minett, H.K. Liu, K. Konstantinov, S.X. Dou, Three dimensional cellular architecture of sulfur doped graphene: self-standing electrode for flexible supercapacitors, lithium ion and sodium ion batteries, Journal of Materials Chemistry A, 2017, 5, 5290.
[20] G. Ma, K. Huang, Q. Zhuang, Z. Ju, Superior cycle stability of nitrogen-doped graphene nanosheets for Na-ion batteries, Materials Letters, 2016, 174, 221.
[21] K. Xu, Nonaqueous liquid electrolytes for lithium-based rechargeable batteries, Chemical Reviews, 2004, 104, 4303.
[22] E. Peled, S. Menkin, Review—SEI: Past, Present and Future, Journal of The Electrochemical Society, 2017, 164, A1703.
[23] D.I. Iermakova, R. Dugas, M.R. Palacín, A. Ponrouch, On the comparative stability of li and na metal anode interfaces in conventional alkyl carbonate electrolytes, Journal of The Electrochemical Society, 2015, 162, A7060.
[24] R. Mogensen, D. Brandell, R. Younesi, Solubility of the solid electrolyte interphase (SEI) in sodium ion batteries, ACS Energy Letters, 2016, 1, 1173.
[25] J. Song, B. Xiao, Y. Lin, K. Xu, X. Li, Interphases in Sodium-ion batteries, Advanced Energy Materials, 2018, 8, 1703082.
[26] M. Watanabe, M.L. Thomas, S. Zhang, K. Ueno, T. Yasuda, K. Dokko, Application of ionic liquids to energy storage and conversion materials and devices, Chemical Reviews, 2017, 117, 7190.
[27] A. Basile, M. Hilder, F. Makhlooghiazad, C. Pozo-Gonzalo, D.R. MacFarlane, P.C. Howlett, M. Forsyth, Ionic liquids and organic ionic plastic crystals: Advanced electrolytes for safer high performance sodium energy storage technologies, Advanced Energy Materials, 2018, 8, 1703491.
[28] R. Hagiwara, K. Matsumoto, J. Hwang, T. Nohira, Sodium ion batteries using ionic liquids as electrolytes, The Chemical Record, 2018, 18, 1.
[29] G.G. Eshetu, S. Grugeon, H. Kim, S. Jeong, L. Wu, G. Gachot, S. Laruelle, M. Armand, S. Passerini, Comprehensive insights into the reactivity of electrolytes based on sodium ions, ChemSusChem, 2016, 9, 462.
[30] I.A. Shkrob, T.W. Marin, Y. Zhu, D.P. Abraham, Why bis(fluorosulfonyl)imide is a “magic anion” for electrochemistry, The Journal of Physical Chemistry C, 2014, 118, 19661.
[31] P. Balbuena, Y. Wang, Lithium-ion batteries, Solid-Electrolyte Interphase, 2004.
[32] E.P.D.G.J. Penciner, The anode-electrolyte interface, Handbook of Battery Materials, Second Edition, 2011.
[33] N. Wongittharom, T.C. Lee, C.H. Hsu, G. Ting Kuo Fey, K.P. Huang, J.K. Chang, Electrochemical performance of rechargeable Li/LiFePO4 cells with ionic liquid electrolyte: Effects of Li salt at 25°C and 50°C, Journal of Power Sources, 2013, 240, 676.
[34] H. Yang, H. Bang, K. Amine, J. Prakash, Investigations of the exothermic reactions of natural graphite anode for li-ion batteries during thermal runaway, Journal of The Electrochemical Society, 2005, 152, A73.
[35] X. Xia, J.R. Dahn, Study of the reactivity of Na/hard carbon with different solvents and electrolytes, Journal of The Electrochemical Society, 2012, 159, A515.
[36] F. Bordet, K. Ahlbrecht, J. Tübke, J. Ufheil, T. Hoes, M. Oetken, M. Holzapfel, Anion intercalation into graphite from a sodium-containing electrolyte, Electrochimica Acta, 2015, 174, 1317.
[37] J.Y. Hwang, S.T. Myung, Y.K. Sun, Sodium-ion batteries: present and future, Chemical Society Reviews, 2017, 46, 3529.
[38] K. Matsumoto, Y. Okamoto, T. Nohira, R. Hagiwara, Thermal and transport properties of Na[N(SO2F)2]–[N-methyl-N-propylpyrrolidinium][N(SO2F)2] ionic liquids for na secondary batteries, The Journal of Physical Chemistry C, 2015, 119, 7648.
[39] M. Forsyth, H. Yoon, F. Chen, H. Zhu, D.R. MacFarlane, M. Armand, P.C. Howlett, Novel Na+ ion diffusion mechanism in mixed organic–inorganic ionic liquid electrolyte leading to high Na+ transference number and stable, high rate electrochemical cycling of sodium cells, The Journal of Physical Chemistry C, 2016, 120, 4276.
[40] T. Fukutsuka, F. Yamane, K. Miyazaki, T. Abe, Electrochemical intercalation of bis(fluorosulfonyl)amide Anion into Graphite, Journal of The Electrochemical Society, 2015, 163, A499.
[41] K. Beltrop, X. Qi, T. Hering, S. Röser, M. Winter, T. Placke, Enabling bis(fluorosulfonyl)imide-based ionic liquid electrolytes for application in dual-ion batteries, Journal of Power Sources, 2018, 373, 193.
[42] M. Winter, R.J. Brodd, What are batteries, fuel cells, and supercapacitors, Chemical Reviews, 2004, 104, 4245.
[43] J. Liu, J.G. Zhang, Z. Yang, J.P. Lemmon, C. Imhoff, G.L. Graff, L. Li, J. Hu, C. Wang, J. Xiao, G. Xia, V.V. Viswanathan, S. Baskaran, V. Sprenkle, X. Li, Y. Shao, B. Schwenzer, Materials science and materials chemistry for large scale electrochemical energy storage: From transportation to electrical grid, Advanced Functional Materials, 2013, 23, 929.
[44] L. Lu, X. Han, J. Li, J. Hua, M. Ouyang, A review on the key issues for lithium-ion battery management in electric vehicles, Journal of Power Sources, 2013, 226, 272.
[45] S.E. Kesler, P.W. Gruber, P.A. Medina, G.A. Keoleian, M.P. Everson, T.J. Wallington, Global lithium resources: Relative importance of pegmatite, brine and other deposits, Ore Geology Reviews, 2012, 48, 55.
[46] H. Pan, Y.S. Hu, L. Chen, Room-temperature stationary sodium-ion batteries for large-scale electric energy storage, Energy & Environmental Science, 2013, 6, 2338.
[47] Y. Cao, L. Xiao, M.L. Sushko, W. Wang, B. Schwenzer, J. Xiao, Z. Nie, L.V. Saraf, Z. Yang, J. Liu, Sodium ion insertion in hollow carbon nanowires for battery applications, Nano Letters, 2012, 12, 3783.
[48] H. Kang, Y. Liu, K. Cao, Y. Zhao, L. Jiao, Y. Wang, H. Yuan, Update on anode materials for Na-ion batteries, Journal of Materials Chemistry A, 2015, 3, 17899.
[49] M.S. Balogun, Y. Luo, W. Qiu, P. Liu, Y. Tong, A review of carbon materials and their composites with alloy metals for sodium ion battery anodes, Carbon, 2016, 98, 162.
[50] Y. Wu, Y. Yu, 2D material as anode for sodium ion batteries: Recent progress and perspectives, Energy Storage Materials, 2019, 16, 323.
[51] L. Shi, T. Zhao, Recent advances in inorganic 2D materials and their applications in lithium and sodium batteries, Journal of Materials Chemistry A, 2017, 5, 3735.
[52] J. Xu, M. Wang, N.P. Wickramaratne, M. Jaroniec, S. Dou, L. Dai, High-performance sodium ion batteries based on a 3D anode from nitrogen-doped graphene foams, Advanced Matererials, 2015, 27, 2042.
[53] J. Zhao, Y.Z. Zhang, F. Zhang, H. Liang, F. Ming, H.N. Alshareef, Z. Gao, Partially Reduced holey graphene oxide as high performance anode for sodium-ion Batteries, Advanced Energy Materials, 2019, 9, 1803215.
[54] H.G. Wang, Z. Wu, F.L. Meng, D.L. Ma, X.L. Huang, L.M. Wang, X.B. Zhang, Nitrogen-doped porous carbon nanosheets as low-cost, high-performance anode material for sodium-ion batteries, ChemSusChem, 2013, 6, 56.
[55] Y.S. Yun, Y.U. Park, S.J. Chang, B.H. Kim, J. Choi, J. Wang, D. Zhang, P.V. Braun, H.J. Jin, K. Kang, Crumpled graphene paper for high power sodium battery anode, Carbon, 2016, 99, 658.
[56] B.K. Ong, H.L. Poh, C.K. Chua, M. Pumera, Graphenes prepared by Hummers, Staudenmaier and Hofmann methods for analysis of TNT-based nitroaromatic explosives in seawater, Electroanalysis, 2012, 24, 2085.
[57] R. Raccichini, A. Varzi, D. Wei, S. Passerini, Critical insight into the relentless progression toward graphene and graphene-containing materials for lithium-ion battery anodes, Advanced Materials, 2017, 29, 1603421.
[58] R.M. Sankaran, K.P. Giapis, Hollow cathode sustained plasma microjets: Characterization and application to diamond deposition, Journal of Applied Physics, 2002, 92, 2406.
[59] D. Mariotti, R.M. Sankaran, Microplasmas for nanomaterials synthesis, Journal of Physics D: Applied Physics, 2010, 43, 323001.
[60] F. Ghezzi, G. Cacciamani, R. Caniello, D.C. Toncu, F. Causa, D. Dellasega, V. Russo, M. Passoni, Carbon structures grown by direct current microplasma: diamonds, single-wall nanotubes, and graphene, The Journal of Physical Chemistry C, 2014, 118, 24714.
[61] D.R. Dreyer, S. Park, C.W. Bielawski, R.S. Ruoff, The chemistry of graphene oxide, Chemical Society Reviews, 2010, 39, 228.
[62] K.P. Loh, Q. Bao, G. Eda, M. Chhowalla, Graphene oxide as a chemically tunable platform for optical applications, Nature Chemistry, 2010, 2, 1015.
[63] R. Hagiwara, J.S. Lee, Ionic liquids for electrochemical devices, Electrochemistry, 2007, 75, 23.
[64] M. Armand, F. Endres, D.R. MacFarlane, H. Ohno, B. Scrosati, Ionic-liquid materials for the electrochemical challenges of the future, Nature Materials, 2009, 8, 621.
[65] J.K. Chang, S.Y. Chen, W.T. Tsai, M.J. Deng, I.W. Sun, Electrodeposition of aluminum on magnesium alloy in aluminum chloride (AlCl3)–1-ethyl-3-methylimidazolium chloride (EMIC) ionic liquid and its corrosion behavior, Electrochemistry Communications, 2007, 9, 1602.
[66] M.J. Earle, J.M. Esperanca, M.A. Gilea, J.N. Lopes, L.P. Rebelo, J.W. Magee, K.R. Seddon, J.A. Widegren, The distillation and volatility of ionic liquids, Nature, 2006, 439, 831.
[67] F. Endres, S. Zein El Abedin, Air and water stable ionic liquids in physical chemistry, Physical Chemistry Chemical Physics, 2006, 8, 2101.
[68] D.R. MacFarlane, M. Forsyth, P.C. Howlett, M. Kar, S. Passerini, J.M. Pringle, H. Ohno, M. Watanabe, F. Yan, W. Zheng, S. Zhang, J. Zhang, Ionic liquids and their solid-state analogues as materials for energy generation and storage, Nature Reviews Materials, 2016, 1, 15005.
[69] L.G. Chagas, D. Buchholz, L. Wu, B. Vortmann, S. Passerini, Unexpected performance of layered sodium-ion cathode material in ionic liquid-based electrolyte, Journal of Power Sources, 2014, 247, 377.
[70] C. Ding, T. Nohira, R. Hagiwara, A high-capacity TiO2/C negative electrode for sodium secondary batteries with an ionic liquid electrolyte, Journal of Materials Chemistry A, 2015, 3, 20767.
[71] C. Ding, T. Nohira, R. Hagiwara, A. Fukunaga, S. Sakai, K. Nitta, Electrochemical performance of hard carbon negative electrodes for ionic liquid-based sodium ion batteries over a wide temperature range, Electrochimica Acta, 2015, 176, 344.
[72] A. Fukunaga, T. Nohira, R. Hagiwara, K. Numata, E. Itani, S. Sakai, K. Nitta, Performance validation of sodium-ion batteries using an ionic liquid electrolyte, Journal of Applied Electrochemistry, 2016, 46, 487.
[73] C.H. Wang, Y.W. Yeh, N. Wongittharom, Y.C. Wang, C.J. Tseng, S.W. Lee, W.S. Chang, J.K. Chang, Rechargeable Na/Na0.44MnO2 cells with ionic liquid electrolytes containing various sodium solutes, Journal of Power Sources, 2015, 274, 1016.
[74] C.Y. Chen, K. Matsumoto, T. Nohira, R. Hagiwara, Improved electrochemical performance of NaVOPO4 positive electrodes at elevated temperature in an ionic liquid electrolyte, Journal of The Electrochemical Society, 2015, 162, A2093.
[75] S.J. An, J. Li, C. Daniel, D. Mohanty, S. Nagpure, D.L. Wood, The state of understanding of the lithium-ion-battery graphite solid electrolyte interphase (SEI) and its relationship to formation cycling, Carbon, 2016, 105, 52.
[76] Y. Yamada, A. Yamada, Superconcentrated electrolytes to create new interfacial chemistry in non-aqueous and aqueous rechargeable batteries, Chemistry Letters, 2017, 46, 1056.
[77] J. Kalhoff, G.G. Eshetu, D. Bresser, S. Passerini, Safer electrolytes for lithium-ion batteries: State of the art and perspectives, ChemSusChem, 2015, 8, 2154.
[78] S. Komaba, W. Murata, T. Ishikawa, N. Yabuuchi, T. Ozeki, T. Nakayama, A. Ogata, K. Gotoh, K. Fujiwara, Electrochemical na insertion and solid electrolyte interphase for hard-carbon electrodes and application to Na-ion batteries, Advanced Functional Materials, 2011, 21, 3859.
[79] L. Bodenes, A. Darwiche, L. Monconduit, H. Martinez, The Solid electrolyte interphase a key parameter of the high performance of Sb in sodium-ion batteries: Comparative X-ray photoelectron spectroscopy study of Sb/Na-ion and Sb/Li-ion batteries, Journal of Power Sources, 2015, 273, 14.
[80] F.A. Soto, A. Marzouk, F. El-Mellouhi, P.B. Balbuena, Understanding Ionic diffusion through SEI components for lithium-ion and sodium-ion batteries: Insights from first-principles calculations, Chemistry of Materials, 2018, 30, 3315.
[81] A. Ponrouch, R. Dedryvère, D. Monti, A.E. Demet, J.M. Ateba Mba, L. Croguennec, C. Masquelier, P. Johansson, M.R. Palacín, Towards high energy density sodium ion batteries through electrolyte optimization, Energy & Environmental Science, 2013, 6, 2361.
[82] A. Balducci, M. Schmuck, W. Kern, B. Rupp, S. Passerini, M. Winter, Ionic liquids as electrolyte in lithium batteries- in situ FTIRs studies on the use of electrolyte additives, ECS Transactions, 2008, 11, 109.
[83] C.H. Wang, C.H. Yang, J.K. Chang, Suitability of ionic liquid electrolytes for room-temperature sodium-ion battery applications, Chemical Communications, 2016, 52, 10890.
[84] M. Dahbi, M. Fukunishi, T. Horiba, N. Yabuuchi, S. Yasuno, S. Komaba, High performance red phosphorus electrode in ionic liquid-based electrolyte for Na-ion batteries, Journal of Power Sources, 2017, 363, 404.
[85] J. Hwang, K. Matsumoto, R. Hagiwara, Symmetric cell electrochemical impedance spectroscopy of Na2FeP2O7 positive electrode material in ionic liquid electrolytes, The Journal of Physical Chemistry C, 2018, 122, 26857.
[86] K. Takada, Y. Yamada, E. Watanabe, J. Wang, K. Sodeyama, Y. Tateyama, K. Hirata, T. Kawase, A. Yamada, Unusual passivation ability of superconcentrated electrolytes toward hard carbon negative electrodes in sodium-ion batteries, ACS Applied Materials & Interfaces, 2017, 9, 33802.
[87] S.H. Ng, C. Vix-Guterl, P. Bernardo, N. Tran, J. Ufheil, H. Buqa, J. Dentzer, R. Gadiou, M.E. Spahr, D. Goers, P. Novák, Correlations between surface properties of graphite and the first cycle specific charge loss in lithium-ion batteries, Carbon, 2009, 47, 705.
[88] J. Collins, G. Gourdin, M. Foster, D. Qu, Carbon surface functionalities and SEI formation during Li intercalation, Carbon, 2015, 92, 193.
[89] S.S. Zhang, A review on electrolyte additives for lithium-ion batteries, Journal of Power Sources, 2006, 162, 1379.
[90] A.M. Haregewoin, A.S. Wotango, B.J. Hwang, Electrolyte additives for lithium ion battery electrodes: progress and perspectives, Energy & Environmental Science, 2016, 9, 1955.
[91] J. Xu, Y. Dou, Z. Wei, J. Ma, Y. Deng, Y. Li, H. Liu, S. Dou, Recent progress in graphite intercalation compounds for rechargeable metal (Li, Na, K, Al)-ion batteries, Advanced Science, 2017, 4, 1700146.
[92] T. Placke, G. Schmuelling, R. Kloepsch, P. Meister, O. Fromm, P. Hilbig, H.W. Meyer, M. Winter, In situ X-ray diffraction studies of cation and anion intercalation into graphitic carbons for electrochemical energy storage applications, ZAAC, 2014, 640, 1996.
[93] M.K. Tatsumi Ishihara, Hiroshige Matsumoto, Masaki Yoshio, Electrochemical intercalation of hexafluorophosphate anion into various carbons for cathode of dual-carbon rechargeable battery, Electrochemical and Solid-State Letters, 2007, 10, A74.
[94] M. Sheng, F. Zhang, B. Ji, X. Tong, Y. Tang, A novel tin-graphite dual-ion battery based on sodium-ion electrolyte with high energy density, Advanced Energy Materials, 2017, 7, 1601963.
[95] M.H. Han, E. Gonzalo, G. Singh, T. Rojo, A comprehensive review of sodium layered oxides: powerful cathodes for Na-ion batteries, Energy & Environmental Science, 2015, 8, 81.
[96] D. Kundu, E. Talaie, V. Duffort, L.F. Nazar, The emerging chemistry of sodium ion batteries for electrochemical energy storage, Angew Chem Int Ed Engl, 2015, 54, 3431.
[97] S.W. Kim, D.H. Seo, X. Ma, G. Ceder, K. Kang, Electrode materials for rechargeable sodium-ion batteries: Potential alternatives to current lithium-ion batteries, Advanced Energy Materials, 2012, 2, 710.
[98] A.L. Gulley, E.A. McCullough, K.B. Shedd, China′s domestic and foreign influence in the global cobalt supply chain, Resources Policy, 2019, 62, 317.
[99] S.J.K. M.A. Boland, Cobalt—For Strength and Color, U.S. Geological Survey Fact Sheet 2011-3081, 2011, available at https://pubs.usgs.gov/fs/2011/3081/.
[100] H.J. Liao, Y.M. Chen, Y.T. Kao, J.Y. An, Y.H. Lai, D.Y. Wang, Freestanding cathode electrode design for high-performance sodium dual-ion battery, The Journal of Physical Chemistry C, 2017, 121, 24463.
[101] Y. Qiao, K. Jiang, X. Li, H. Deng, Y. He, Z. Chang, S. Wu, S. Guo, H. Zhou, A Hybrid Electrolytes design for capacity-equivalent dual-graphite battery with superior long-term cycle life, Advanced Energy Materials, 2018, 8, 1801120.
[102] A. Wang, W. Yuan, J. Fan, L. Li, A Dual-graphite battery with pure 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl) imide as the electrolyte, Energy Technology, 2018, 6, 2172.
[103] P. Meister, V. Siozios, J. Reiter, S. Klamor, S. Rothermel, O. Fromm, H.W. Meyer, M. Winter, T. Placke, Dual-ion cells based on the electrochemical intercalation of asymmetric fluorosulfonyl-(trifluoromethanesulfonyl) imide anions into graphite, Electrochimica Acta, 2014, 130, 625.
[104] Y.Y. Peng, Y.M. Liu, J.K. Chang, C.H. Wu, M.D. Ger, N.W. Pu, C.L. Chang, A facile approach to produce holey graphene and its application in supercapacitors, Carbon, 2015, 81, 347.
[105] C.T. Hsieh, Y.F. Chen, C.E. Lee, Y.M. Chiang, H. Teng, Thermal transport in stereo carbon framework using graphite nanospheres and graphene nanosheets, Carbon, 2016, 106, 132-141.
[106] H.B. Zhang, J.W. Wang, Q. Yan, W.G. Zheng, C. Chen, Z.Z. Yu, Vacuum-assisted synthesis of graphene from thermal exfoliation and reduction of graphite oxide, Journal of Materials Chemistry, 2011, 21, 5392.
[107] H.C. Schniepp, J.L. Li, M.J. McAllister, H. Sai, M. Herrera-Alonso, D.H. Adamson, R.K. Prud’homme, R. Car, D.A. Saville, I.A. Aksay, Functionalized single graphene sheets derived from splitting graphite oxide, The Journal of Physical Chemistry B, 2006, 110, 8535.
[108] M. Passoni, V. Russo, D. Dellasega, F. Causa, F. Ghezzi, D. Wolverson, C.E. Bottani, Raman spectroscopy of nonstacked graphene flakes produced by plasma microjet deposition, Journal of Raman Spectroscopy, 2012, 43, 884.
[109] S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S.T. Nguyen, R.S. Ruoff, Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide, Carbon, 2007, 45, 1558.
[110] S. Das, S. Singh, V. Singh, D. Joung, J.M. Dowding, D. Reid, J. Anderson, L. Zhai, S.I. Khondaker, W.T. Self, S. Seal, Oxygenated functional group density on graphene oxide: Its effect on cell toxicity, Particle & Particle Systems Characterization, 2013, 30, 148.
[111] Z. Liu, X. Duan, X. Zhou, G. Qian, J. Zhou, W. Yuan, Controlling and formation mechanism of oxygen-containing groups on graphite oxide, Industrial & Engineering Chemistry Research, 2014, 53, 253.
[112] A. Jorio, M.S. Dresselhaus, R. Saito, G. Dresselhaus, Raman spectroscopy in graphene related systems, WILEY-VCH, 2011.
[113] T.C. Chieu, M.S. Dresselhaus, M. Endo, Raman studies of benzene-derived graphite fibers, Physical Review B, 1982, 26, 5867.
[114] L.M. Malard, M.A. Pimenta, G. Dresselhaus, M.S. Dresselhaus, Raman spectroscopy in graphene, Physics Reports, 2009, 473, 51.
[115] Z. Jiang, B. Pei, A. Manthiram, Randomly stacked holey graphene anodes for lithium ion batteries with enhanced electrochemical performance, Journal of Materials Chemistry A, 2013, 1, 7775.
[116] J. Wan, F. Shen, W. Luo, L. Zhou, J. Dai, X. Han, W. Bao, Y. Xu, J. Panagiotopoulos, X. Fan, D. Urban, A. Nie, R. Shahbazian-Yassar, L. Hu, In situtransmission electron microscopy observation of sodiation–desodiation in a long cycle, high-capacity reduced graphene oxide sodium-ion battery anode, Chemistry of Materials, 2016, 28, 6528.
[117] G. Wang, X. Shen, J. Yao, J. Park, Graphene nanosheets for enhanced lithium storage in lithium ion batteries, Carbon, 2009, 47, 2049.
[118] Y. Zhao, M. Liu, L. Gan, X. Ma, D. Zhu, Z. Xu, L. Chen, Ultramicroporous carbon nanoparticles for the high-performance electrical double-layer capacitor electrode, Energy & Fuels, 2014, 28, 1561.
[119] M. Liu, J. Qian, Y. Zhao, D. Zhu, L. Gan, L. Chen, Core–shell ultramicroporous@microporous carbon nanospheres as advanced supercapacitor electrodes, Journal of Materials Chemistry A, 2015, 3, 11517.
[120] Y. Shao, J. Xiao, W. Wang, M. Engelhard, X. Chen, Z. Nie, M. Gu, L.V. Saraf, G. Exarhos, J.G. Zhang, J. Liu, Surface-driven sodium ion energy storage in nanocellular carbon foams, Nano Letters, 2013, 13, 3909.
[121] H. Azuma, H. Imoto, S.i. Yamada, K. Sekai, Advanced carbon anode materials for lithium ion cells, Journal of Power Sources, 1999, 81-82, 1.
[122] K. Kuratani, M. Yao, H. Senoh, N. Takeichi, T. Sakai, T. Kiyobayashi, Na-ion capacitor using sodium pre-doped hard carbon and activated carbon, Electrochimica Acta, 2012, 76, 320.
[123] K. Gotoh, T. Ishikawa, S. Shimadzu, N. Yabuuchi, S. Komaba, K. Takeda, A. Goto, K. Deguchi, S. Ohki, K. Hashi, T. Shimizu, H. Ishida, NMR study for electrochemically inserted Na in hard carbon electrode of sodium ion battery, Journal of Power Sources, 2013, 225, 137.
[124] I. Hasa, S. Passerini, J. Hassoun, Characteristics of an ionic liquid electrolyte for sodium-ion batteries, Journal of Power Sources, 2016, 303, 203.
[125] L. Wu, A. Moretti, D. Buchholz, S. Passerini, D. Bresser, Combining ionic liquid-based electrolytes and nanostructured anatase TiO2 anodes for intrinsically safer sodium-ion batteries, Electrochimica Acta, 2016, 203, 109.
[126] H. Usui, Y. Domi, M. Shimizu, A. Imoto, K. Yamaguchi, H. Sakaguchi, Niobium-doped titanium oxide anode and ionic liquid electrolyte for a safe sodium-ion battery, Journal of Power Sources, 2016, 329, 428.
[127] W. Lv, Z. Li, Y. Deng, Q.H. Yang, F. Kang, Graphene-based materials for electrochemical energy storage devices: Opportunities and challenges, Energy Storage Materials, 2016, 2, 107.
[128] M.H. Chakrabarti, C.T.J. Low, N.P. Brandon, V. Yufit, M.A. Hashim, M.F. Irfan, J. Akhtar, E. Ruiz-Trejo, M.A. Hussain, Progress in the electrochemical modification of graphene-based materials and their applications, Electrochimica Acta, 2013, 107, 425.
[129] M. Egashira, T. Tanaka, N. Yoshimoto, M. Morita, Influence of ionic liquid species in non-aqueous electrolyte on sodium insertion into hard carbon, Electrochemistry, 2012, 80, 755.
[130] J. Zhang, D.W. Wang, W. Lv, S. Zhang, Q. Liang, D. Zheng, F. Kang, Q.H. Yang, Achieving superb sodium storage performance on carbon anodes through an ether-derived solid electrolyte interphase, Energy & Environmental Science, 2017, 10, 370.
[131] H.C. Chen, J. Patra, S.W. Lee, C.J. Tseng, T.Y. Wu, M.H. Lin, J.K. Chang, Electrochemical Na+ storage properties of SnO2/graphene anodes in carbonate-based and ionic liquid electrolytes, Journal of Materials Chemistry A, 2017, 5, 13776.
[132] A.G. Wren, R.W. Phillips, L.U. Tolentino, Surface reactions of chlorine molecules and atoms with water and sulfuric acid at low temperatures, Journal of Colloid and Interface Science, 1979, 70, 544.
[133] Z. Shuxian, W.K. Hall, G. Ertl, H. Knözinger, X-ray photoemission study of oxygen and nitric oxide adsorption on MoS2, Journal of Catalysis, 1986, 100, 167.
[134] J. Sharma, D.S. Downs, Z. Iqbal, F.J. Owens, X‐ray photoelectron spectroscopy of S2N2 and the solid state polymerization of S2N2 to metallic (SN)x, The Journal of Chemical Physics, 1977, 67, 3045.
[135] A. Barrie, F.J. Street, An Auger and X-ray photoelectron spectroscopic study of sodium metal and sodium oxide, Journal of Electron Spectroscopy and Related Phenomena, 1975, 7, 1.
[136] P.H. Citrin, High-Resolution X-ray photoemission from sodium metal and its hydroxide, Physical Review B, 1973, 8, 5545.
[137] F.A. Soto, P. Yan, M.H. Engelhard, A. Marzouk, C. Wang, G. Xu, Z. Chen, K. Amine, J. Liu, V.L. Sprenkle, F. El-Mellouhi, P.B. Balbuena, X. Li, Tuning the solid electrolyte interphase for selective Li- and Na-ion storage in hard carbon, Advanced Materials, 2017, 29, 1606860.
[138] S. Ray, R.P. Cooney, Thermal degradation of polymer and polymer composites, in: Handbook of Environmental Degradation of Materials, 2012, pp. 213.
[139] C. Ding, T. Nohira, K. Kuroda, R. Hagiwara, A. Fukunaga, S. Sakai, K. Nitta, S. Inazawa, NaFSA–C1C3pyrFSA ionic liquids for sodium secondary battery operating over a wide temperature range, Journal of Power Sources, 2013, 238, 296.
[140] K. Matsumoto, T. Hosokawa, T. Nohira, R. Hagiwara, A. Fukunaga, K. Numata, E. Itani, S. Sakai, K. Nitta, S. Inazawa, The Na[FSA]–[C2C1im][FSA] (C2C1im+:1-ethyl-3-methylimidazolium and FSA−:bis(fluorosulfonyl)amide) ionic liquid electrolytes for sodium secondary batteries, Journal of Power Sources, 2014, 265, 36. |