參考文獻 |
1. E. Peled,* C. Menachem, D. Bar-Tow, and A. Melman. Improved Graphite Anode for Lithium-Ion Batteries. J. Electrochem. Soc. volume 143, issue 1, 145-159 (1996).
2. Hatchard, T. D. & Dahn, J. R. In situ XRD and electrochemical study of the reaction of lithium with amorphous silicon. J. Electrochem. Soc. 151, 838–842 (2004).
3. Zhang, X. W. et al. Electrochemical performance of lithium ion battery, nano-silicon- based, disordered carbon composite anodes with different microstructures. J. Power Sources 125, 206–213 (2004).
4. Beaulieu, L. Y., Hatchard, T. D., Bonakdarpour, A., Fleischauer, M.D. & Dahn, J. R. Reaction of Li with alloy thin films studied by in situ AFM. J. Electrochem. Soc. 150, 1457–1464 (2003).
5. Zhang, W. J. A review of the electrochemical performance of alloy anodes for lithium-ion batteries. J. Power Sources 196, 13–24 (2011).
6. M. Ashuri, Q. He, L.L. Shaw, Nanoscale 8 74–103 (2016).
7. Sakaebe, H. and H. Matsumoto, N-Methyl-N-propylpiperidinium bis (trifluoromethanesulfonyl) imide (PP13–TFSI)–novel electrolyte base for Li battery. Electrochemistry Communications, 2003. 5(7): 594-598 (2003).
8. A. Abouimrane, I. Belharouak, K. Amine. Sulfone-based electrolyte for high-voltage Li-ion batteries. Electrochemistry Communications Volume 11, Issue 5, 1073-1076 (2009).
9. J.M. Tarascon, M. Armand, Nature 414, 359–367 (2001).
10. K.M. Abraham, J. Phys. Chem. Lett. 830–844 (2015).
11. B. Scrosati, J. Garche, J. Power Sources 195 2419–2430 (2011).
12. M. Armand, J.-M. Tarascon, Nature 451 652–657 (2008).
13. P. Roy, S.K. Srivastava, J. Mater. Chem. A 3 2454–2484(2015).
14. C.Z. Lu, C.C. Cheng, J.M. Chen, 工業材料雜誌 338期 (2015).
15. W.J. Zhang, J. Power Sources 196 13–24 (2011).
16. B.A. Boukamp, G.C. Lesh, R.A. Huggins, J. Electrochem. Soc. 128 725–729 (1981).
17. B. Liang, Y. Liu, Y. Xu, J. Power Sources 267 469–490 (2014).
18. H. Wu, Y. Cui, Nano Today 7 414–429 (2012).
19. J.H. Ryu, J.W. Kim, Y.-E. Sung, S.M. Oh, Electrochem. Solid-State Lett. 7 306–309 (2004).
20. M.A. Rahman, G. Song, A.I. Bhatt, Y.C. Wong, C. Wen, Adv. Funct. Mater. 26 647–678 (2016).
21. S.H. Ng, J. Wang, D. Wexler, K. Konstantinov, Z.P. Guo, H.K. Liu, Angew. Chem. 45 6896–6899 (2006).
22. C.K. Chan, R. Ruffo, S.S. Hong, Y. Cui, J. Power Sources 189 1132–1140 (2009).
23. Y. Oumellal, N. Delpuech, D. Mazouzi, N. Dupre, J. Gaubicher, P. Moreau, P. Soudan, B. Lestriez, D. Guyomard, J. Mater. Chem. 21 6201–6208 (2011).
24. M. Ashuri, Q. He, L.L. Shaw, Nanoscale 8 74–103 (2016).
25. H. Ma, F. Cheng, J.Y. Chen, J.Z. Zhao, C.S. Li, Z.L. Tao, J. Liang, Adv. Mater. 19 4067–4070 (2007).
26. C.K. Chan, H. Peng, G. Liu, K. McIlwrath, X.F. Zhang, R.A.Huggins, Y. Cui, Nat. Nanotechnol. 3 31–35 (2008).
27. N. Liu, Z. Lu, J. Zhao, M.T. McDowell, H.W. Lee, W. Zhao, Y. Cui, Nat. Nanotechnol. 9 187–192 (2014).
28. Pengpeng Lv, Hailei Zhao, Chunhui Gao, Tainhou Zhang, Highly efficient and scalable synthesis of SiOx/C composite with core-shell nanostructure as high-performance anode material for lithium ion batteries, Electrochimica Acta 152 345-351 (2015).
29. N. Liu, H. Wu, M.T. McDowell, Y. Yao, C. Wang, Y. Cui, Nano Lett. 12 3315–3321 (2012).
30. N. Liu, Z. Lu, J. Zhao, M.T. McDowell, H.W. Lee, W. Zhao, Y. Cui, Nat. Nanotechnol. 9 187–192 (2014).
31. Aurbach, D.; Markovsky, B.; Levi, M. D.; Schechter, A.; Moshkovich, M.; Kohen, Y. J. Power Sources 95, 81-82, (1999).
32. Andersson, A.; henningson, A.; Siegbahn, H.; Jansson, U. Edstrom, K. J. Power Sources, 522, 119-121,(2003).
33. Balbuena, P. B.; Wang, Y. Lithium-Ion Batteries: Solid-Electrolyte Interphase; Imperial College Press: London, (2004).
34. Groult, H.; Nakajima, T.; Perrigaud, L.; Ohzawa, Y.; Yashiro,H.; Komaba, S.; Kumagai, N. J. Fluorine Chem., 126, 1111.(2005)
35. Aurbach, D.; Gamolsky, K.; Markovsky, B.; Gofer, Y.; Schmidt,M.; Heider, U. Electrochim. Acta, 47, 1423 (2002).
36. Sato, K.; Zhao, L.; Okada, S.; Yamaki, J.-i. J. Power Sources,196, 5617 (2011).
37. Moller, K. C.; Hodal, T.; Appel, W. K.; Winter, M.; Besenhard, J. O. J. Power Sources, 9798, 595 (2001).
38. Peled, E. J. Electrochem. Soc. 126, 2047 (1979).
39. Aurbach, D.; Markovsky, B.; Gamolsky, K.; Levi, E.; Ein-Eli, Y. Electrochim. Acta, 45, 67 (1999).
40. N.-S. Choi, K. H. Yew, K. Y. Lee, M. Sung, H. Kim and S.-S. Kim, J. Power Sources, 161, 1254–1259 (2006).
41. R. Lv, J. Yang, J. Wang and Y. NuLi, J. Power Sources, 196, 3868–3873 (2011).
42. V. Etacheri, O. Haik, Y. Goffer, G. A. Roberts, I. C. Stefan, R. Fasching and D. Aurbach, Langmuir, 28, 965–976 (2012).
43. J. S. Kim, D. Byun and J. K. Lee, Curr. Appl. Phys., 14, 596–602 (2014).
44. A. Bordes, K. Eom and T. F. Fuller, J. Power Sources, 257, 163–169 (2014).
45. L. Chen, K. Wang, X. Xie and J. Xie, J. Power Sources, 174, 538–543 (2007).
46. 117 S. Hy, Y.-H. Chen, H.-M. Cheng, C.-J. Pan, J.-H. Cheng, J. Rick and B.-J. Hwang, ACS Appl. Mater. Interfaces, 7, 13801–13807 (2015).
47. I. A. Profatilova, C. Stock, A. Schmitz, S. Passerini and M. Winter, J. Power Sources, 222, 140–149 (2013).
48. S. Park, J. Heon Ryu and S. M. Oh, J. Electrochem. Soc., 158, 498–503 (2011).
49. A. M. Haregewoin, A. S. Wotango, B. J. Hwang, Energy Environ. Sci., 9, 1955-1988 (2016).
50. Rogers, J. R. D.; Seddon, K. R. In Ionic Liquids: Industrial Application to Green Chemistry; ACS Symposium Series 818, 195-210, (2002)
51. Chiappe, C.; Pieraccini, D. Ionic Liquids: Solvent Properties and Organic Reactivity. J. Phys. Org. Chem. 18, 275−297 (2005).
52. Ohno, H. In Electrochemical Aspects of Ionic Liquids; John Wiley & Sons Inc.: Hoboken, NJ, USA, (2005)
53. Hassoun, J., Fernicola, A., Navarra, M. A., Panero, S. & Scrosati, B. An advanced lithium-ion battery based on a nanostructured Sn–C anode and an electrochemically stable LiTFSi-Py24TFSI ionic liquid electrolyte. J. Power Sources 195, 574–579, (2010)
54. MacFarlane, D.R., et al., Ionic liquids and their solid-state analogues as materials for energy generation and storage. Nature Reviews Materials. 1: p. 15005 (2016).
55. Balducci, A., et al., Ionic liquids as electrolyte in lithium batteries: In situ FTIRS studies on the use of electrolyte additives. ECS Transactions. 11(29): p. 109-114 (2008).
56. Ishikawa, M., et al., Pure ionic liquid electrolytes compatible with a graphitized carbon negative electrode in rechargeable lithium-ion batteries. Journal of power sources, 162(1): 658-662 (2006).
57. D. M. Piper, T. Evans, K. Leung, T. Watkins, J. Olson, S. C. Kim, S. S. Han, V. Bhat, K. H. Oh, D. Buttry, S.-H. Lee, Nat. Commun. 6, 1–10, (2015).
58. S. Sayah, F. Ghamouss, F. Tran-Van, J. Santos-Peña, D. LemordantElectrochimica Acta Electrochimica Acta 243, 197–206, (2017).
59. Shohei Seko, Hiroki Nara, Moongook Jeong, Tokihiko Yokoshima,Toshiyuki Momma, Tetsuya Osaka Electrochimica Acta 243, 65–71, (2017).
60. V. Baranchugov, E. Markevich, E. Pollak, G. Salitra, D. Aurbach Electrochem Commun 9 796–800, (2007).
61. Simon F. Lux1, Martin Schmuck, Sangsik Jeong, Stefano Passerini,z,y, Martin Winter and Andrea BalducciInt. J. Energy Res. 34 97–106, (2010).
62. Naoaki Yabuuchi , Keiji Shimomura , Yukako Shimbe , Tomoaki Ozeki , Jin Young Son , Hiroshi Oji , Yasushi Katayama , Takashi Miura , and Shinichi Komaba Adv. Energy Mater. 1, 759–765, (2011).
63. Vidhya Chakrapani, Florencia Rusli, Micheal A. Filler, and Paul A. Kohl, J. Phys. Chem. C 115, 22048–22053, (2011).
64. Hiroyuki Usui, Masahiro Shimizu, Hiroki Sakaguchi Journal of Power Sources 235, 29-35, (2013).
65. S. Ivanov , C. A. Vlaic , S. Du ,D. Wang , P. Schaaf , A. Bund, J Appl Electrochem, (2013).
66. Masahiro Shimizu, Hiroyuki Usui, Kuninobu Matsumoto, Toshiki Nokami, Toshiyuki Itoh, and Hiroki Sakaguchi, J. The Electrochem. Soc, 161 (12) A1765-A1771, (2014).
67. Khalid Ababtain,† Ganguli Babu, Xinrong Lin, Marco-Tulio F. Rodrigues, Hemtej Gullapalli, Pulickel M. Ajayan, Mark W. Grinstaff‡ and Leela Mohana Reddy Arava. ACS Appl. Mater. Interfaces. 8 (24), pp 15242–15249, (2016).
68. Hitoshi Shobukawa, JaeWook Shin, Judith Alvarado, Cyrus S. Rustomji and Ying Shirley Meng J. Mater. Chem. A, 2016, 4, 15117, (2017).
69. Daniela Molina Piper , Tyler Evans , Shanshan Xu , Seul Cham Kim , Sang Sub Han, Ken Liang Liu , Kyu Hwan Oh , Ronggui Yang , and Se-Hee Lee Adv. Mater. 28, 188–193, (2016).
70. Guk-Tae Kim, Tadhg Kennedy, Michael Brandon, Hugh Geaney, Kevin M. Ryan, Stefano Passerini, and Giovanni B. Appetecchi. ACS Nano, 11 (6), pp 5933 -5943, (2017).
71. Kazuki Yamaguchi, Yasuhiro Domi, Hiroyuki Usui, and Hiroki Sakaguchi. ChemElectroChem, 4, 3257–3263, (2017).
72. Zazuki Yamaguchi, Yasuhiro Domi, Hiroyuki Usui, Masahiro Shimizu, Kuninobu Matsumoto, Toshiki Nokami, Toshiyuki Itoh, Hiroki Sakaguchi. Journal of Power Sources,338 ,103-107, (2017).
73. Jong Hwan Park, Junhyuk Moon, Sangil Han, Seongyong Park, Ju Wan Lim, Dong-Jin Yun, Dong Young Kim, Kwangjin Park, and In Hyuk Son. J. Phys. Chem. C, 121 (47), 26155–26162, (2017).
74. Yasuhiro Domi, Hiroyuki Usui, Masakuni Narita, Yoshihiro Fujita, Kazuki Yamaguchi, and Hiroki Sakaguchi J. Electrochem Soc. 164 (13) A3208-A3213, (2018).
75. Ashley Heist, Daniela Molina Piper, Tyler Evans, Seul Cham Kim, Sang Sub Han, Kyu Hwan Oh, and Se-Hee Lee. J. Electrochemical Soc. 165 (2) A244-A250, (2018).
76. Shuhei Yodoya, Yasuhiro Domi, Hiroyuki Usui, and Hiroki Sakaguchi ChemistrySelect, 4, 1375 –1378, (2019).
77. Yasuhiro Domi, Hiroyuki Usui,, Kazuki Yamaguchi, Shuhei Yodoya, and Hiroki Sakaguch, ACS Appl. Mater. Interface, 11, 2950−2960 (2019).
78. Erwann Luais, Fouad Ghamouss, Joe Sakai,Thomas Defforge & Gaël Gautier1,François Tran-Van J Solid State Electrochem (2019).
79. Garcia, B. and M. Armand, Aluminium corrosion in room temperature molten salt. Journal of power sources. 132(1): p. 206-208 (2004).
80. Kühnel, R.-S. and A. Balducci, Comparison of the anodic behavior of aluminum current collectors in imide-based ionic liquids and consequences on the stability of high voltage supercapacitors. Journal of Power Sources. 249: p. 163-171 (2014).
81. Zhou, Q., et al., Physical and electrochemical properties of N-alkyl-N-methylpyrrolidinium bis (fluorosulfonyl) imide ionic liquids: PY13FSI and PY14FSI. The Journal of Physical Chemistry B. 112(43): p. 13577-13580 (2008).
82. Morita, M., et al., Anodic behavior of aluminum in organic solutions with different electrolytic salts for lithium ion batteries. Electrochimica Acta. 47(17): p. 2787-2793 (2002).
83. Peng, C., et al., Investigation of the anodic behavior of Al current collector in room temperature ionic liquid electrolytes. Electrochimica Acta. 53(14): p. 4764-4772 (2008).
84. E. Cho, J. Mun, O. B. Chae, O. M. Kwon, H. T. Kim, J. H. Ryu, Y. G. Kim, S. M. Oh, Electrochemistry Communications. 22, 1-3, (2012).
85. Wang, J., et al., Superconcentrated electrolytes for a high-voltage lithium-ion battery. Nature communications. 7(2016).
86. A. Abouimrane, I. Belharouak, and K. Amine, Electrochem.Commun, 11, 1073 (2013).
87. J. Demeaux, E. D. Vito, D. Lemordant, M. L. Digabel, H. Galiano, M. Caillon-Caravanier, and B. Claude-Montigny, Phys. Chem. Chem. Phys., 15, 20900 (2013).
88. J. Alvarado, Marshall A. Schroeder, M. Zhang, O. Borodin, E. Gobrogge, M. Olguin, M. S. Ding, Mallory Gobet,Steve Greenbaum, Y. S. Meng, K. Xu. Materials Today, Volume 21, Number:4, 341-353, (2018).
89. X. Ren et al, Localized High-Concentration SulfoneElectrolytes for High-Efficiency Lithium-Metal Batteries, Chem 4, 1–16, (2018).
90. A. Hofmann, M. Schulz, S. Indris, R. Heinzmann, T. Hanemann, Electrochimica Acta, Volume 147, 20, 704-711(2014).
91. F. Wu, Q. Zhu, R. Chen, N. Chen, Y. Chen, L. Li, ScienceDirect, Nano Energy 13, 546–553, (2015).
92. L. Dong, F. Liang, D. Wang, C. Zhu, J. Liu, D. Gui, C.Li, Electrochimica Acta 270 426-433, (2018).
93. Suo, L., Et Al., A New Class Of Solvent-In-Salt Electrolyte For High-Energy Rechargeable Metallic Lithium Batteries. Nature Communications. 4: P. 1481. (2013).
94. Ma, J., et al., Surface and interface issues in spinel LiNi0. 5Mn1. 5O4: insights into a potential cathode material for high energy density lithium ion batteries. Chem. Mater, 28(11): p. 3578-3606 (2016).
95. Hoon-Hee Ryu, Kang-Joon Park, Chong S. Yoon, and Yang-Kook Sun, Chem. Mater, 30, 1155−1163 (2018).
96. Xu, K., Electrolytes and interphases in Li-ion batteries and beyond. Chemical reviews. 114(23): p. 11503-11618 (2014).
97. Laszczynski., Sophie., Understanding Electrolyte Decomposition of Graphite/NCM811 Cells at Elevated Operating Voltage. Journal of The Electrochemical Society, 166 (10) 1853-1859 (2019)
98. Goodenough, J.B. and Y. Kim, Challenges for rechargeable Li batteries. Chemistry of materials, 22(3): p. 587-603 (2009). |