博碩士論文 106329011 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:28 、訪客IP:18.226.88.18
姓名 葉恩信(En-Sin-Ye)  查詢紙本館藏   畢業系所 材料科學與工程研究所
論文名稱 離子液體與碸類溶劑混合型電解液應用於鋰離子電池矽負極材料
(Mixture of ionic liquid and sulfone electrolyte for silicon anodes of lithium-ion batteries)
相關論文
★ 鋅空氣電池之電解質開發★ 添加石墨烯助導劑對活性碳超高電容電極性質的影響
★ 耐高壓離子液體電解質★ 碳系超級電容器用耐高壓電解液研發
★ 石墨烯負極和離子液體電解液於鈉二次電池之應用★ 針對奈米多孔碳之表面及孔洞形貌進行優化 以打造具備高可靠度、低自放電的超級電容器
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本研究的第一部分,主要比較離子液體1 m Lithium bis(fluorosulfonyl)imide (以下稱為LiFSI) 溶於N-Propyl-N-methylpyrrolidinium bis(fluoromethanesulfonyl)imide (以下稱為PMP-FSI)、1 m Lithium bis(trifluoromethanesulfonyl)imide (以下稱為LiTFSI)溶於N-Propyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide (以下稱為PMP-TFSI)、以及傳統有機電解液1 m LiPF6/EC-DEC-5wt% FEC應用在Si/Li半電池的差別。
其中,1 m LiFSI/PMP-FSI電解液具有高離子導電率,在室溫時高速2 A/g與低速0.1 A/g的放電電容值的維持率高達48.6%;但是在高電壓環境下FSI-陰離子會腐蝕鋁基材,而有機碳酸酯電解液與TFSI-based即使具備高電壓穩定性,兩者在矽負極的表現卻不如FSI-based離子液體電解液來的優秀。為了尋找同時具備高電壓穩定性以及負極穩定性的電解液,本研究嘗試將LiFSI鹽類溶解於不同種類的碸,結果發現,高濃度LiFSI/碸類電解液能夠在石墨負極上達到穩定的充放電庫倫效率(99 %於第五圈0.1 A/g電流速率),但在矽負極則無法完成正常充放電。
延續第一部分的結果,在第二部分針對1 m LiFSI/PMP-FSI改質。首先在離子液體中導入不同碸類來提升電解液的耐高壓性能,結果顯示,添加50%的Ethyl isopropyl sulfone (以下稱為EiPS)的混合電解液較其他碸類具有最佳的矽負極高速電容量值維持率(41%),但導入碸類卻伴隨著離子導電率的下降,此外,在混合系統的基礎下(PMP-FSI與EiPS 依不同比例混合,在本文以” % EiPS “ 表示碸類的體積比例),提高鋰鹽濃除了可以提升矽負極的高速電容值及電容值維持率,在3 m LiFSI/50% EiPS電解液中為(1277 mAh/g @2 A/g ;56% CE),超越純離子液體的效能,也抑制鋁腐蝕反應。在眾多嘗試中,發現3 m LiFSI/50% EiPS、3 m LiFSI/75% EiPS能成功抑制鋁腐蝕並且得到優異的LiNi0.8Mn0.1Co0.1O2正極充放電性能,其中3 m LiFSI/50% EiPS比3 m LiFSI/75% EiPS具有更加優良的高速性能,在2 C與0.1 C放電電容值以及高速維持率分別達到(134 mAh/g @ 2C ; 204 mAh/g @ 0.1 C ;66% CE)與(94 mAh/g @ 2C ; 161 mAh/g @ 0.1 C ; 58% CE)。
在第二部分發現混合系統確實有其優勢,但以LiFSI作為鋰鹽對於抑制鋁基材腐蝕的能力有限,且成本較昂貴,所以在此章節將鋰鹽更換為陰離子較大的LiTFSI期望得到與第一部分相近的結果。相比LiFSI的混合系統,LiTFSI展現出較低的離子導電度、較高的黏度,而且在2 m濃度下展現出該鹽類之最佳性能。2 m TFSI/50% EiPS分別於正極展現了59%的高速維持率以及121 mAh/g的高速電容值,負極則為45%的高速維持率與951 mAh/g的高速電容值,就負極而言,雖然較低於第一部分的性能,但在不同充放電速率的庫倫效率皆略高於以LiFSI作為鹽類的電解液。
摘要(英) At the first part, we find FSI-based ionic liquid has better electrochemical stability than conventional organic electrolyte in silicon anode; and it is non-flammable, but FSI- anion will corrode aluminum foil, so it can not be used for the cathode material which working potential is over than 4.0 V.
The sulfone-based electrolyte has a very wide electrochemical window, but the formation of the SEI layer in the anode need the help of LiFSI salt. Moreover, even if the LiFSI concentration is increased, the silicon electrode still cannot be stabilized.
Second part, we add sulfone solvent into FSI-based ionic liquids and increase the concentration of lithium salts. The result effectively improved the performance of ionic liquid in LiNi0.8Mn0.1Co0.1O2 cathode materials. In the LiFSI series mixed electrolyte, the high-current retention and the specific capacity of 3 m LiFSI/50% EiPS is 56% @ 2 A/g, 1277 mAh/g for silicon anode, on the other hand, the performance for cathode is 66%, 134 mAh/g. The retention of 200 cycle life for the anode at the rate of 1 A/g exhibits 63.1%, which is higher than pure FSI-based ionic liquid that only have 48.6% high rate retention.
Due to the corrosion issue and costing down, in the last part, the lithium salt is replaced with a larger anoin, LiTFSI. Compared to LiFSI hybrid system, LiTFSI exhibits lower ionic conductivity, higher viscosity, and exhibits the best performance of the salt at a concentration of 2 m in this salt. 2 m LiTFSI/50% EiPS exhibits a high-rate retention of 59% and a high-rate capacitance of 121 mAh/g on the cathode, and a high-rate retention of 45%, high-rate capacity of 951 mAh/g on the anode. Although the performance of this part is lower than previous, the coulombic efficiency in different current rate is slightly higher than that using LiFSI salt.
關鍵字(中) ★ 鋰離子電池
★ 離子液體
★ 矽負極
關鍵字(英)
論文目次 摘要 i
Abstract iii
誌謝 iv
總目錄 v
圖目錄 viii
表目錄 xii
第一章 緒論 1
1-1 研究動機 1
第二章 研究背景與文獻回顧 3
2-1 矽負極材料應用於鋰離子電池 3
2-1-1 碳披覆矽負極材 6
2-1-2 矽負極電解液發展概況 10
2-1-3 離子液體電解質應用於矽負極 14
離子液體簡介 14
離子液體電解液於矽負極半電池 19
離子液體於矽負極全電池 25
2-2 FSI-陰離子於高電壓之困境 29
2-2-1鋁基材腐蝕 29
2-2-2 耐高壓電解液 32
高濃度電解液 32
碸類電解液 34
離子液體-碸類混合電解液 39
2-2-3 三元正極材料(LiNixCoyMn1-x-yO2) 45
正極材料簡介 45
電極表面降解 48
傳統電解液的分解 51
第三章 實驗方法與步驟 52
3-1 實驗藥品 52
實驗器材 54
3-2 鍍碳矽粉製備 55
3-3 電極製備 55
3-3-1 工作電極塗佈 55
3-3-2 鈕扣型電池製備 55
3-4 電解液製備 56
3-5 材料分析 56
3-6 電解液物化性分析 56
3-7 電化學性質測試 57
第四章 結果與討論 59
4-1電解液應用於Si負極之分析 59
4-1-1 有機碳酸酯與離子液體電解液 59
4-1-2 電解液之鋁腐蝕現象 63
4-1-3 碸類電解液於負極 66
4-1-4 電解液之黏度與離子導電度 70
4-1-5 TGA熱穩定分析 72
4-1-6 燃燒測試 73
4-2 LiFSI於離子液體/碸類混合電解液 75
4-2-1 不同碸類混合電解液用於矽負極 75
4-2-2 電解液之黏度與離子導電度 78
4-2-3 負極之定電流充放電 81
4-2-4 交流阻抗分析與循環壽命 86
4-2-5 電解液之鋁腐蝕探討 89
4-2-6 電解液之結構分析 93
4-2-7 正極之定電流充放電 95
4-3 LiTFSI於離子液體/碸類混合電解液 98
4-3-1電解液之黏度與離子導電度 98
4-3-2 電解液之熱穩定性質 100
4-3-3 電解液之鋁腐蝕探討 101
4-3-4 負極之定電流充放電 104
4-2-5 正極之定電流充放電 108
4-3-6 交流阻抗分析與循環壽命 113
第五章 結論 115
參考文獻 116
參考文獻 1. E. Peled,* C. Menachem, D. Bar-Tow, and A. Melman. Improved Graphite Anode for Lithium-Ion Batteries. J. Electrochem. Soc. volume 143, issue 1, 145-159 (1996).
2. Hatchard, T. D. & Dahn, J. R. In situ XRD and electrochemical study of the reaction of lithium with amorphous silicon. J. Electrochem. Soc. 151, 838–842 (2004).
3. Zhang, X. W. et al. Electrochemical performance of lithium ion battery, nano-silicon- based, disordered carbon composite anodes with different microstructures. J. Power Sources 125, 206–213 (2004).
4. Beaulieu, L. Y., Hatchard, T. D., Bonakdarpour, A., Fleischauer, M.D. & Dahn, J. R. Reaction of Li with alloy thin films studied by in situ AFM. J. Electrochem. Soc. 150, 1457–1464 (2003).
5. Zhang, W. J. A review of the electrochemical performance of alloy anodes for lithium-ion batteries. J. Power Sources 196, 13–24 (2011).
6. M. Ashuri, Q. He, L.L. Shaw, Nanoscale 8 74–103 (2016).
7. Sakaebe, H. and H. Matsumoto, N-Methyl-N-propylpiperidinium bis (trifluoromethanesulfonyl) imide (PP13–TFSI)–novel electrolyte base for Li battery. Electrochemistry Communications, 2003. 5(7): 594-598 (2003).
8. A. Abouimrane, I. Belharouak, K. Amine. Sulfone-based electrolyte for high-voltage Li-ion batteries. Electrochemistry Communications Volume 11, Issue 5, 1073-1076 (2009).
9. J.M. Tarascon, M. Armand, Nature 414, 359–367 (2001).
10. K.M. Abraham, J. Phys. Chem. Lett. 830–844 (2015).
11. B. Scrosati, J. Garche, J. Power Sources 195 2419–2430 (2011).
12. M. Armand, J.-M. Tarascon, Nature 451 652–657 (2008).
13. P. Roy, S.K. Srivastava, J. Mater. Chem. A 3 2454–2484(2015).
14. C.Z. Lu, C.C. Cheng, J.M. Chen, 工業材料雜誌 338期 (2015).
15. W.J. Zhang, J. Power Sources 196 13–24 (2011).
16. B.A. Boukamp, G.C. Lesh, R.A. Huggins, J. Electrochem. Soc. 128 725–729 (1981).
17. B. Liang, Y. Liu, Y. Xu, J. Power Sources 267 469–490 (2014).
18. H. Wu, Y. Cui, Nano Today 7 414–429 (2012).
19. J.H. Ryu, J.W. Kim, Y.-E. Sung, S.M. Oh, Electrochem. Solid-State Lett. 7 306–309 (2004).
20. M.A. Rahman, G. Song, A.I. Bhatt, Y.C. Wong, C. Wen, Adv. Funct. Mater. 26 647–678 (2016).
21. S.H. Ng, J. Wang, D. Wexler, K. Konstantinov, Z.P. Guo, H.K. Liu, Angew. Chem. 45 6896–6899 (2006).
22. C.K. Chan, R. Ruffo, S.S. Hong, Y. Cui, J. Power Sources 189 1132–1140 (2009).
23. Y. Oumellal, N. Delpuech, D. Mazouzi, N. Dupre, J. Gaubicher, P. Moreau, P. Soudan, B. Lestriez, D. Guyomard, J. Mater. Chem. 21 6201–6208 (2011).
24. M. Ashuri, Q. He, L.L. Shaw, Nanoscale 8 74–103 (2016).
25. H. Ma, F. Cheng, J.Y. Chen, J.Z. Zhao, C.S. Li, Z.L. Tao, J. Liang, Adv. Mater. 19 4067–4070 (2007).
26. C.K. Chan, H. Peng, G. Liu, K. McIlwrath, X.F. Zhang, R.A.Huggins, Y. Cui, Nat. Nanotechnol. 3 31–35 (2008).
27. N. Liu, Z. Lu, J. Zhao, M.T. McDowell, H.W. Lee, W. Zhao, Y. Cui, Nat. Nanotechnol. 9 187–192 (2014).
28. Pengpeng Lv, Hailei Zhao, Chunhui Gao, Tainhou Zhang, Highly efficient and scalable synthesis of SiOx/C composite with core-shell nanostructure as high-performance anode material for lithium ion batteries, Electrochimica Acta 152 345-351 (2015).
29. N. Liu, H. Wu, M.T. McDowell, Y. Yao, C. Wang, Y. Cui, Nano Lett. 12 3315–3321 (2012).
30. N. Liu, Z. Lu, J. Zhao, M.T. McDowell, H.W. Lee, W. Zhao, Y. Cui, Nat. Nanotechnol. 9 187–192 (2014).
31. Aurbach, D.; Markovsky, B.; Levi, M. D.; Schechter, A.; Moshkovich, M.; Kohen, Y. J. Power Sources 95, 81-82, (1999).
32. Andersson, A.; henningson, A.; Siegbahn, H.; Jansson, U. Edstrom, K. J. Power Sources, 522, 119-121,(2003).
33. Balbuena, P. B.; Wang, Y. Lithium-Ion Batteries: Solid-Electrolyte Interphase; Imperial College Press: London, (2004).
34. Groult, H.; Nakajima, T.; Perrigaud, L.; Ohzawa, Y.; Yashiro,H.; Komaba, S.; Kumagai, N. J. Fluorine Chem., 126, 1111.(2005)
35. Aurbach, D.; Gamolsky, K.; Markovsky, B.; Gofer, Y.; Schmidt,M.; Heider, U. Electrochim. Acta, 47, 1423 (2002).
36. Sato, K.; Zhao, L.; Okada, S.; Yamaki, J.-i. J. Power Sources,196, 5617 (2011).
37. Moller, K. C.; Hodal, T.; Appel, W. K.; Winter, M.; Besenhard, J. O. J. Power Sources, 9798, 595 (2001).
38. Peled, E. J. Electrochem. Soc. 126, 2047 (1979).
39. Aurbach, D.; Markovsky, B.; Gamolsky, K.; Levi, E.; Ein-Eli, Y. Electrochim. Acta, 45, 67 (1999).
40. N.-S. Choi, K. H. Yew, K. Y. Lee, M. Sung, H. Kim and S.-S. Kim, J. Power Sources, 161, 1254–1259 (2006).
41. R. Lv, J. Yang, J. Wang and Y. NuLi, J. Power Sources, 196, 3868–3873 (2011).
42. V. Etacheri, O. Haik, Y. Goffer, G. A. Roberts, I. C. Stefan, R. Fasching and D. Aurbach, Langmuir, 28, 965–976 (2012).
43. J. S. Kim, D. Byun and J. K. Lee, Curr. Appl. Phys., 14, 596–602 (2014).
44. A. Bordes, K. Eom and T. F. Fuller, J. Power Sources, 257, 163–169 (2014).
45. L. Chen, K. Wang, X. Xie and J. Xie, J. Power Sources, 174, 538–543 (2007).
46. 117 S. Hy, Y.-H. Chen, H.-M. Cheng, C.-J. Pan, J.-H. Cheng, J. Rick and B.-J. Hwang, ACS Appl. Mater. Interfaces, 7, 13801–13807 (2015).
47. I. A. Profatilova, C. Stock, A. Schmitz, S. Passerini and M. Winter, J. Power Sources, 222, 140–149 (2013).
48. S. Park, J. Heon Ryu and S. M. Oh, J. Electrochem. Soc., 158, 498–503 (2011).
49. A. M. Haregewoin, A. S. Wotango, B. J. Hwang, Energy Environ. Sci., 9, 1955-1988 (2016).
50. Rogers, J. R. D.; Seddon, K. R. In Ionic Liquids: Industrial Application to Green Chemistry; ACS Symposium Series 818, 195-210, (2002)
51. Chiappe, C.; Pieraccini, D. Ionic Liquids: Solvent Properties and Organic Reactivity. J. Phys. Org. Chem. 18, 275−297 (2005).
52. Ohno, H. In Electrochemical Aspects of Ionic Liquids; John Wiley & Sons Inc.: Hoboken, NJ, USA, (2005)
53. Hassoun, J., Fernicola, A., Navarra, M. A., Panero, S. & Scrosati, B. An advanced lithium-ion battery based on a nanostructured Sn–C anode and an electrochemically stable LiTFSi-Py24TFSI ionic liquid electrolyte. J. Power Sources 195, 574–579, (2010)
54. MacFarlane, D.R., et al., Ionic liquids and their solid-state analogues as materials for energy generation and storage. Nature Reviews Materials. 1: p. 15005 (2016).
55. Balducci, A., et al., Ionic liquids as electrolyte in lithium batteries: In situ FTIRS studies on the use of electrolyte additives. ECS Transactions. 11(29): p. 109-114 (2008).
56. Ishikawa, M., et al., Pure ionic liquid electrolytes compatible with a graphitized carbon negative electrode in rechargeable lithium-ion batteries. Journal of power sources, 162(1): 658-662 (2006).
57. D. M. Piper, T. Evans, K. Leung, T. Watkins, J. Olson, S. C. Kim, S. S. Han, V. Bhat, K. H. Oh, D. Buttry, S.-H. Lee, Nat. Commun. 6, 1–10, (2015).
58. S. Sayah, F. Ghamouss, F. Tran-Van, J. Santos-Peña, D. LemordantElectrochimica Acta Electrochimica Acta 243, 197–206, (2017).
59. Shohei Seko, Hiroki Nara, Moongook Jeong, Tokihiko Yokoshima,Toshiyuki Momma, Tetsuya Osaka Electrochimica Acta 243, 65–71, (2017).
60. V. Baranchugov, E. Markevich, E. Pollak, G. Salitra, D. Aurbach Electrochem Commun 9 796–800, (2007).
61. Simon F. Lux1, Martin Schmuck, Sangsik Jeong, Stefano Passerini,z,y, Martin Winter and Andrea BalducciInt. J. Energy Res. 34 97–106, (2010).
62. Naoaki Yabuuchi , Keiji Shimomura , Yukako Shimbe , Tomoaki Ozeki , Jin Young Son , Hiroshi Oji , Yasushi Katayama , Takashi Miura , and Shinichi Komaba Adv. Energy Mater. 1, 759–765, (2011).
63. Vidhya Chakrapani, Florencia Rusli, Micheal A. Filler, and Paul A. Kohl, J. Phys. Chem. C 115, 22048–22053, (2011).
64. Hiroyuki Usui, Masahiro Shimizu, Hiroki Sakaguchi Journal of Power Sources 235, 29-35, (2013).
65. S. Ivanov , C. A. Vlaic , S. Du ,D. Wang , P. Schaaf , A. Bund, J Appl Electrochem, (2013).
66. Masahiro Shimizu, Hiroyuki Usui, Kuninobu Matsumoto, Toshiki Nokami, Toshiyuki Itoh, and Hiroki Sakaguchi, J. The Electrochem. Soc, 161 (12) A1765-A1771, (2014).
67. Khalid Ababtain,† Ganguli Babu, Xinrong Lin, Marco-Tulio F. Rodrigues, Hemtej Gullapalli, Pulickel M. Ajayan, Mark W. Grinstaff‡ and Leela Mohana Reddy Arava. ACS Appl. Mater. Interfaces. 8 (24), pp 15242–15249, (2016).
68. Hitoshi Shobukawa, JaeWook Shin, Judith Alvarado, Cyrus S. Rustomji and Ying Shirley Meng J. Mater. Chem. A, 2016, 4, 15117, (2017).
69. Daniela Molina Piper , Tyler Evans , Shanshan Xu , Seul Cham Kim , Sang Sub Han, Ken Liang Liu , Kyu Hwan Oh , Ronggui Yang , and Se-Hee Lee Adv. Mater. 28, 188–193, (2016).
70. Guk-Tae Kim, Tadhg Kennedy, Michael Brandon, Hugh Geaney, Kevin M. Ryan, Stefano Passerini, and Giovanni B. Appetecchi. ACS Nano, 11 (6), pp 5933 -5943, (2017).
71. Kazuki Yamaguchi, Yasuhiro Domi, Hiroyuki Usui, and Hiroki Sakaguchi. ChemElectroChem, 4, 3257–3263, (2017).
72. Zazuki Yamaguchi, Yasuhiro Domi, Hiroyuki Usui, Masahiro Shimizu, Kuninobu Matsumoto, Toshiki Nokami, Toshiyuki Itoh, Hiroki Sakaguchi. Journal of Power Sources,338 ,103-107, (2017).
73. Jong Hwan Park, Junhyuk Moon, Sangil Han, Seongyong Park, Ju Wan Lim, Dong-Jin Yun, Dong Young Kim, Kwangjin Park, and In Hyuk Son. J. Phys. Chem. C, 121 (47), 26155–26162, (2017).
74. Yasuhiro Domi, Hiroyuki Usui, Masakuni Narita, Yoshihiro Fujita, Kazuki Yamaguchi, and Hiroki Sakaguchi J. Electrochem Soc. 164 (13) A3208-A3213, (2018).
75. Ashley Heist, Daniela Molina Piper, Tyler Evans, Seul Cham Kim, Sang Sub Han, Kyu Hwan Oh, and Se-Hee Lee. J. Electrochemical Soc. 165 (2) A244-A250, (2018).
76. Shuhei Yodoya, Yasuhiro Domi, Hiroyuki Usui, and Hiroki Sakaguchi ChemistrySelect, 4, 1375 –1378, (2019).
77. Yasuhiro Domi, Hiroyuki Usui,, Kazuki Yamaguchi, Shuhei Yodoya, and Hiroki Sakaguch, ACS Appl. Mater. Interface, 11, 2950−2960 (2019).
78. Erwann Luais, Fouad Ghamouss, Joe Sakai,Thomas Defforge & Gaël Gautier1,François Tran-Van J Solid State Electrochem (2019).
79. Garcia, B. and M. Armand, Aluminium corrosion in room temperature molten salt. Journal of power sources. 132(1): p. 206-208 (2004).
80. Kühnel, R.-S. and A. Balducci, Comparison of the anodic behavior of aluminum current collectors in imide-based ionic liquids and consequences on the stability of high voltage supercapacitors. Journal of Power Sources. 249: p. 163-171 (2014).
81. Zhou, Q., et al., Physical and electrochemical properties of N-alkyl-N-methylpyrrolidinium bis (fluorosulfonyl) imide ionic liquids: PY13FSI and PY14FSI. The Journal of Physical Chemistry B. 112(43): p. 13577-13580 (2008).
82. Morita, M., et al., Anodic behavior of aluminum in organic solutions with different electrolytic salts for lithium ion batteries. Electrochimica Acta. 47(17): p. 2787-2793 (2002).
83. Peng, C., et al., Investigation of the anodic behavior of Al current collector in room temperature ionic liquid electrolytes. Electrochimica Acta. 53(14): p. 4764-4772 (2008).
84. E. Cho, J. Mun, O. B. Chae, O. M. Kwon, H. T. Kim, J. H. Ryu, Y. G. Kim, S. M. Oh, Electrochemistry Communications. 22, 1-3, (2012).
85. Wang, J., et al., Superconcentrated electrolytes for a high-voltage lithium-ion battery. Nature communications. 7(2016).
86. A. Abouimrane, I. Belharouak, and K. Amine, Electrochem.Commun, 11, 1073 (2013).
87. J. Demeaux, E. D. Vito, D. Lemordant, M. L. Digabel, H. Galiano, M. Caillon-Caravanier, and B. Claude-Montigny, Phys. Chem. Chem. Phys., 15, 20900 (2013).
88. J. Alvarado, Marshall A. Schroeder, M. Zhang, O. Borodin, E. Gobrogge, M. Olguin, M. S. Ding, Mallory Gobet,Steve Greenbaum, Y. S. Meng, K. Xu. Materials Today, Volume 21, Number:4, 341-353, (2018).
89. X. Ren et al, Localized High-Concentration SulfoneElectrolytes for High-Efficiency Lithium-Metal Batteries, Chem 4, 1–16, (2018).
90. A. Hofmann, M. Schulz, S. Indris, R. Heinzmann, T. Hanemann, Electrochimica Acta, Volume 147, 20, 704-711(2014).
91. F. Wu, Q. Zhu, R. Chen, N. Chen, Y. Chen, L. Li, ScienceDirect, Nano Energy 13, 546–553, (2015).
92. L. Dong, F. Liang, D. Wang, C. Zhu, J. Liu, D. Gui, C.Li, Electrochimica Acta 270 426-433, (2018).
93. Suo, L., Et Al., A New Class Of Solvent-In-Salt Electrolyte For High-Energy Rechargeable Metallic Lithium Batteries. Nature Communications. 4: P. 1481. (2013).
94. Ma, J., et al., Surface and interface issues in spinel LiNi0. 5Mn1. 5O4: insights into a potential cathode material for high energy density lithium ion batteries. Chem. Mater, 28(11): p. 3578-3606 (2016).
95. Hoon-Hee Ryu, Kang-Joon Park, Chong S. Yoon, and Yang-Kook Sun, Chem. Mater, 30, 1155−1163 (2018).
96. Xu, K., Electrolytes and interphases in Li-ion batteries and beyond. Chemical reviews. 114(23): p. 11503-11618 (2014).
97. Laszczynski., Sophie., Understanding Electrolyte Decomposition of Graphite/NCM811 Cells at Elevated Operating Voltage. Journal of The Electrochemical Society, 166 (10) 1853-1859 (2019)
98. Goodenough, J.B. and Y. Kim, Challenges for rechargeable Li batteries. Chemistry of materials, 22(3): p. 587-603 (2009).
指導教授 張仍奎 李勝偉 審核日期 2019-8-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明