博碩士論文 106282003 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:25 、訪客IP:3.146.105.194
姓名 林柏丞(Po-Cheng Lin)  查詢紙本館藏   畢業系所 物理學系
論文名稱
(Multiscale coherent excitations and extreme events in dust acoustic wave turbulence)
相關論文
★ 二加一維鏈狀微粒電漿液體微觀運動與結構之實驗研究★ 剪力下的庫倫流體微觀黏彈性反應
★ 強耦合微粒電漿中的結構與動力行為研究★ 脈衝雷射誘發之雷漿塵爆
★ 強耦合微粒電漿中脈衝雷射引發電漿微泡★ 二維強耦合微粒電漿方向序的時空尺度律
★ 二維微粒庫倫液體中集體激發微觀動力研究★ 超薄二維庫侖液體的整齊行為
★ 超薄二維微粒電漿庫侖流的微觀運動行為★ 微米狹縫中之脈衝雷射誘發二維氣泡相互作用
★ 介觀微粒庫倫液體之流變學★ 二維神經網路系統之集體發火動力學行為
★ 大白鼠腦皮質層神經元網路之同步發放行為研究★ 二維團簇腦神經網路之同步發火
★ 二維微粒電漿液體微觀結構之記憶行為★ 微粒電漿中電漿微泡的生成與交互作用之動力行為研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 隨著調升系統外部驅動,水流甚至是波動等非線性系統皆具從規則至紊亂態的相轉換。一般來說,此紊亂態具有極高和極低的不穩定振幅擾動,但非是完全無序的。過去在水流系統中的研究發現,具有絲狀奇異核心的多尺度漩渦是水流紊流中的基礎擬序激發態(coherent excitation)。
在轉換成紊亂態前,過去在弱失穩微粒電漿聲波的研究中,發現環繞著絲狀低振幅洞(Low amplitude hole filament)的正轉或反轉的單尺度聲渦(acoustic vortex)是單尺度擬序激發態,聲渦能對偶生成並對偶湮滅以維持拓樸守恆,這現象和弱失穩水流中的單尺度雙旋渦的對偶生成及煙滅類似。另一方面,極大振幅突波常伴隨著較高出現機率的低振幅洞,而低振幅洞旁較強的波面扭曲使粒子三維聚焦可被當成是突波形成的前驅跡象。
然而,在三維行進紊波中,多尺度擬序激發態是否存在、及其與極低和極高振幅突波(rogue wave)的關連皆為鮮少人研究的基礎問題。此外,因其連續頻譜中缺乏譜隙,紊亂狀態無法透過傅立葉帶通濾波拆解成多尺度模態,使得探討上述問題更加困難。
此研究中,我們以微粒電漿聲紊波作為平台並透過多維度經驗模態拆解紊波成多尺度模態,發現聲紊波中的多尺度聲渦(acoustic vortex)為其基礎擬序激發態並且說明多尺度聲渦與極高突波的關連。除了相同尺度的聲渦能對偶產生並對偶湮滅之外,不同尺度的聲渦能互相纏結並同步旋轉。這些現象皆和紊流中的多尺度旋渦有相近的現象。此外,我們也發現到極高突波皆座落於是大振幅多尺度扭曲波峰的交點。經過統計分析,我們也觀察到多尺度低振幅洞有較高的機率出現超高突波旁。多尺度低振幅洞扭曲了多尺度波峰,而扭曲的多尺度波峰產生額外的橫向推力使波前粒子能夠三維聚焦並導致極高突波能夠在紊波中產生。
摘要(英) With increasing driving, the transition from ordered to the turbulence with fluctuating high and low amplitude events ubiquitously occurs in various nonlinear extended media ranging from hydrodynamics flows to nonlinear wave media. Counterintuitively, turbulence is not completely disordered. In hydrodynamics turbulence, multi-scale interacting vortices surrounding filament-like singular cores, are basic coherent excitations.
Previous studies in dust acoustic waves demonstrated, for the weakly disordered single scale wave state before the transition to the wave turbulence state, the spontaneous pair-generation and pair-annihilation of single-scale acoustic vortices (AVs) with opposite helicities winding around low-amplitude hole filament (LAH filament) pairs, are the basic coherent excitation surrounding the low amplitude extreme events. Large-amplitude rogue wave events (RWEs) through 3D particle focusing by the preceding surrounding distorted waveforms were also observed.
Nevertheless in three-dimensional (3D) traveling wave turbulence, whether multi-scale coherent excitations also exist, how they are formed, and how they are correlated with high and low amplitude singular events are unexplored fundamental issues. Moreover, the absence of spectral gaps in the continuous turbulent spectrum disabling the decomposition of turbulent field into multiscale modes though Fourier band-pass filtering, makes the studies of above issues even more challenging.
In this work, the above unexplored issues are experimentally investigated using 3D dust acoustic wave turbulence as a platform, though multi-dimensional complementary ensemble empirical mode decomposition (MCEEMD). It is found, for the first time, the dust acoustic wave turbulence can be viewed as a zoo of self-similar interacting multi-scale AVs. In addition to the AV intra-mode interaction (e.g. pair generation/propagation/annihilation), the inter-mode interactions of AVs with same/opposite helicity, their entanglement and synchronization, are found to be the fundamental dynamical processes in acoustic wave turbulence, akin to the interacting multi-scale vortices around worm-like singular cores observed in hydrodynamic turbulence.
For RWEs in the acoustic wave turbulence, it is found that multiscale waveform focusing and the phase synchronization of multiscale wave crests as well as their envelopes are the keys for the generation of RWEs. In the 2+1D spatiotemporal space, RWEs are located at the intersection of distorted multiscale crest surfaces with large amplitudes and preceded by higher probability of finding LAHs in each mode. The synchronized multiscale distorted crests nearby multiscale LAHs assist 3D particle focusing for the generation of RWE in wave turbulence.
關鍵字(中) ★ 微粒電漿聲紊波
★ 多尺度聲渦
★ 瘋狗浪
★ 希爾伯特-黃轉換
關鍵字(英) ★ Dust acoustic wave turbulence
★ Multiscale acoustic vortices
★ Rogue wave
★ Hilbert-Huang transform
論文目次 1. Introduction 1
2. Background and theory 6
2.1 Hydrodynamic turbulence and wave turbulence 6
2.2 Weakly disordered single-scale wave 8
2.3 Dust acoustic wave 9
2.3.1 Dusty plasma system 9
2.3.2 Dust acoustic wave 11
2.3.3 Acoustic vortices as basic singular excitations in waves 12
2.3.4 Rogue waves and their correlation with defects 13

3. Experiment and data analysis 15
3.1 Experimental setup 15
3.2 Data analysis 18

4. Result and discussion 22
4.1 Decomposition of dust wave turbulence into multiscale modes 22
4.2 Multiscale undulated waveforms 24
4.3 Identification of multiscale acoustic vortices (AVs) 26
4.3.1 Helical waveform winding around defects 26
4.3.2 Self-similar dynamical behaviors of multiscale AVs 28
4.3.3 I nter- and intra-mode interactions between multiscale AVs 30
4.4 Observation of rogue waves in wave turbulence 32
4.4.1 Multiscale wave synchronization inducing rogue waves 32
4.4.2 Relation between rogue waves and multiscale defects 26
4.4.3 Multiscale focusing by preceding waveforms as the generation
mechanism of rogue wave events 38

5. Conclusion 41
6. Bibliography 43
參考文獻 [1] V. E. Zakhariv, V. S. L’vov, and G. Falkovich, Kolmogorov Spectra of Turbulence I (Springer, Berlin, 1992).
[2] P. A. Davidson, Turbulence : An Introduction for Scientists and Engineers (Oxford University Press, 2004)
[3] Z. S. She, E. Jackson, and S. A. Orszag, Nature, 344, 266 (1900).
[4] M. Farge, Annu. Rev. Fluid Mech. 24, 395 (1992).
[5] J. Jiménez, A. A. Wary, P. G. Saffman, and R. S. Rogallo, J. Fluid Mech. 255, 65 (1993)
[6] M. Farge, G. Pellegrino and K. Schneider, Phys. Rev. Lett. 87, 054501 (2001)
[7] P. K. Yeung, X. M. Zhai and K. R. Sreenivasan, Proc. Natl. Acad. Sci. U.S.A. 112, 12633 (2015).
[8] S. Goto, J. Fluid Mech. 605, 355-366 (2008)
[9] T. Leung, N. Swaminathan and P. A. Davidson, J. Fluid Mech. 710, 453-481 (2012)
[10] S. Goto, Y. Saito and G. Kawahara, Phys. Rev. Fluids 2, 064603 (2017)
[11] J. Cardesa, A, Vela-Martín, J. Jiménez, Science 357, 782-784 (2017)
[12] Y. X. Huang, F. G. Schmitt, Z. M. Lu and Y. L. Liu, EPL, 84, 40010, (2008)
[13] S. Perri, V. Carbone, A. Vecchio, R. Bruno, H. Korth, T. H. Zurbuchen, and L. Sorriso-Valvo, Phys. Rev. Lett. 109, 245004 (2012).
[14] E. Falcon, C. Laroche, and S. Fauve, Phys. Rev. Lett. 98, 094503 (2007).
[15] P. Denissenko, S. Lukaschuk and S. Nazarenko, Phys. Rev. Lett. 99, 0114501 (2007)
[16] H. Punzmann, M. G. Shats, and H. Xis, Phys. Rev. Lett. 103, 064502 (2009)
[17] D. Pierangeli, F. DiMei, G. DiDomenico, A. J. Agranat, C. Conti and E. DelRe, Phys. Rev. Lett. 117, 183902 (2016)
[18] S. Coulibaly, M. Taki, A. Bendahmane, G. Millot, B. Kibler and M. G. Clerc, Phys. Rev. X 9, 011054 (2019)
[19] P. Cobelli, P. Petitjeans, A. Maurel, V. Pagneux, N. Mordant, Phys. Rev. Lett. 103, 204301 (2009)
[20] J. Pramanik, B. M. Veeresha, G. Prasad, A. Sen, and P. K. Kaw, Phys. Lett. A 312, 84 (2003).
[21] Y. Y. Tsai, M. C. Chang, and L. I, Phys. Rev. E 86, 045402(R) (2012).
[22] G. V. Kolmakov, P. V. E. McClintock, and S. V. Nazarenko, Proc. Natl. Acad. Sci. U.S.A. 111, 4727 (2014).
[23] P. C. Lin and L. I, Phys. Rev. Lett, 120, 135004 (2018)
[24] P. C. Lin, W. J. Chen and L. I, submitted
[25] P. C. Lin and L. I, submitted
[26] P. Coullet, L. Gil and J. Lega, Phys. Rev. Lett. 62, 1619 (1989)
[27] M. C. Cross and P. C. Hohenberg, Rev. Mod. Phys. 65, 851 (1993)
[28] I. S. Aranson and L. Kramer, Rev. Mod. Phys. 74, 99 (2002)
[29] E. Bodenschatz, W. Pesch, and G Ahlers, Annu. Rev. Fluid Mech. 32, 709 (2000).
[30] I. Rehberg, S. Rasenat, and V. Steinberg, Phys. Rev. Lett. 62, 756 (1989).
[31] I. Shani, G. Cohen, and J. Fineberg, Phys. Rev. Lett. 104, 184507 (2010).
[32] F. T. Arecchi, G. Giacomelli, P. L. Ramazza and S. Residori, Phys. Rev. Lett. 67, 3749 (1991)
[33] C. J. Gibson, A. M. Yao and G. L. Oppo, Phys. Rev. Lett. 116, 043903 (2016)
[34] M. Hildebrand, M. Bär and M. Eiswirth, Phys. Rev. Lett. 75, 1503 (1995)
[35] M. Vinson, S. Mironov, S. Mulvey and A. Pertsov, Nature 386, 477 (1997)
[36] A. S. Mikhailov and K. Showalter, Phys. Rep. 425, 79 (2006).
[37] C. Qiao, H. Wang and Q. Ouyang, Phys. Rev. E 79, 016212 (2009)
[38] T. Lilienkamp, J. Christoph and U. Parlitz, Phys. Rev. Lett. 119, 054101 (2017)
[39] M. C. Chang, Y. Y. Tsai, and L. I, Phys. Plasma, 20, 083703 (2013).
[40] Y. Y. Tsai and L. I, Phys. Rev. E. 90, 013106 (2014).
[41] J. D. Williams, Phys. Rev. E. 89, 023105 (2014).
[42] C. Kharif, E. Pelinovsky, and A. Slunyaev, Rogue Waves in the Ocean (Speinger, Heidelberg, 2009).
[43] M. Shats, H. Punzmann, and H. Xis, Phys. Rev. Lett. 104, 104503 (2010).
[44] A. Chabchoub, N. P. Hoffmann and N. Akhmediev Phys. Rev. Lett. 106, 204502 (2011)
[45] H. Y. Chen, C. Y. Liu and L. I, Phys. Rev. Fluids 3, 064401 (2018)
[46] D. R. Solli, C. Ropers, P. Koonath and B. Jalali, Nature 450, 1054 (2007)
[47] H. Bailung, S. K. Sharma and Y. Nakamura, Phys. Rev. Lett. 107, 255005 (2011)
[48] Y. Y. Tsai, J. Y. Tsai and L. I, Nat. Phys. 12, 573 (2016)
[49] P. K. Shukla and B. Eliasson, Rev. Mod. Phys. 81, 25-44 (2009).
[50] G. E. Morfill and A. V. Ivlev, Rev. Mod. Phys. 81, 1353-1404 (2009)
[51] N. N. Rao, P. K. Shukla, and M. Y. Yu, Planet. Space Sci. 38, 543 (1990).
[52] J. H. Chu, J. B. Du and L. I, J. Phys. D. 27, 296 (1993)
[53] P. Kaw and R. Sigh, Phys. Rev. Lett. 79, 423 (1997)
[54] W. M. Moslem, R. Sabry, S. K. El-Labany and P. K. Shukla, Phys. Rev. E 84, 066402 (2011)
[55] J. Heinrich, S. H. Kim and R. L. Merlino, Phys. Rev. Lett. 103, 115002 (2009)
[56] P. Bandyopadhyay, G. Prasad, A. Sen and P. K. Kaw, Phys. Rev. Lett. 101, 065006 (2008)
[57] L. W. Teng, M. C. Chang, Y. P. Tseng and L. I, Phys. Rev. Lett. 103, 245005 (2009)
[58] M. C. Chang, Y. Y. Tsai and L. I, Phys. Plasmas 20, 083703 (2013)
[59] N. E. Huang, S. S. P. Shen, Hilbert-Huang Transform and Its Applications (World Scientific, Singapore, 2005)
[60] N. E. Huang, Z. Shen, S. R. Long, M. C. Wu, H. H. Shih, Q. Zheng, N. C. Yen, C. C. Tung and H. H. Liu, Proc. R. Soc. Lond. A 454, 903 (1998)
[61] Z. Wu and N. E. Huang, Adv. Adapt. Data Anal. 1, 1-41 (2009)
[62] Z. Wu and N.E. Huang, Adv. Adapt. Data Anal. 2, 397-414 (2010)
[63] J. R. Yeh, J. S. Shieh and N. E. Huang, Adv. Adapt. Data Anal. 2, 135-156 (2010)
[64] B. Chapman, Glow Discharge Process (Wiley, Inter-science Press, 1995)
指導教授 伊林(Lin I) 審核日期 2019-6-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明