博碩士論文 106222023 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:38 、訪客IP:3.137.180.32
姓名 簡鈺㝗(Yu-Liang Chien)  查詢紙本館藏   畢業系所 物理學系
論文名稱
(Nucleation and growth kinetics of hexagonal boron nitride growth on copper substrate in chemical vapor deposition)
相關論文
★ 細菌地毯微流道中的次擴散動力學★ Role of strain in the solid phase epitaxial regrowth of dopant and isovalent impurities co-doped silicon
★ hydrodynamic spreading of forces from bacterial carpet★ What types of defects are created on supported chemical vapor deposition grown graphene by scanning probe lithography in ambient?
★ 以掃描式電容顯微鏡研究硼離子在矽基板中的瞬態增強擴散行為★ 應變及摻雜相互對以磷離子佈植之碳矽基板的固態磊晶成長動力學之研究
★ 雜質在假晶型碳矽合金對張力之熱穩定性影響★ Revisiting the role of strain in solid-phase epitaxial regrowth of ion-implanted silicon
★ 利用選擇性參雜矽基板在石墨稀上局部陽極氧化反應★ Thermal stability of supersaturated carbon incorporation in silicon
★ 氧化銅上的石墨烯在快速化學氣相沉積過程中的成核以及成長動力學★ Reduction dynamics of locally oxidized graphene
★ 微小游泳粒子在固定表面的聚集現象★ Role of impurities in semiconductor: Silicon and ZnO substrate
★ The growth of multilayer graphene through chemical vapor deposition★ Characteristic of defect generated on graphene through pulsed scanning probe lithography
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 隨著石墨烯的發現,二維材料由於其突出的性能和應用潛力而受到特別關注。此外,氮化硼是一種由III-V族的硼與氮元素所組成的等比例結構。在二維材料中,六方氮化硼是藉由硼原子與氮原子之間的sp2鍵結所組成的平面結構。然而,它最特別的特性是擁有廣闊的能隙高達(~5.7eV),且在二維材料中只有六方氮化硼是屬於絕緣的性質。在這優越的絕緣特性下,六方氮化硼可用於相當多的應用,例如: 介電質層,可撓式基板和遠紫外光射線。近年來,在六方氮化硼中的原子缺陷可調控其能隙,可用於量子射極的運用。
    本研究,利用低壓化學氣相沉積系統成長二維六方氮化硼在銅箔基板上。藉由在銅箔以及氧化銅薄片上觀察氫氣對氬氣的比例,我們需要尋找最適合的成長條件來限制六方氮化硼的成核密度。然而,我們確實藉由氧化銅找到成核密度可以成功地被限制在成長時間初期。之後,成核會雨後春筍般的出現,因為氫氣非常快速的還原氧化銅且成核點主要來自於從銅箔內部所析出的硼。然而,我們可以藉由JMAK模型來證明六方氮化硼其生長機制主要來自於成核,這結果表示六方氮化硼的高成核密度以及微小的晶粒在銅箔基板上。這表示,有效的控制基板中的硼濃度,則可以成長出大晶粒且低成核密度的六方氮化硼。 
摘要(英) Accompany with the graphene, the two dimensional material is also attracted particular attention due to the outstanding properties and potential for application. Besides, boron nitride is a III-V group combined with boron and nitrogen atomic that the stoichiometry is 1:1. For two dimensional material, hexagonal boron nitride is combined with boron and nitrogen in horizontal plane by sp2 bonded. Then, its particular property has large band gap (~5.7eV) and also it is only the isolator property in two dimensional group. In this isolator properties, hexagonal boron nitride can use at the dielectric layer, the flexible substrate and deep ultraviolet emitter. Recently, its point defect can change the band gap that is useful for the quantum emitter application.
    In this study, we utilizes the low pressure chemical vapor deposition to grow two dimensional hexagonal boron nitride on the copper foil. By visiting the effect of hydrogen to argon ratio in as-copper and copper oxide foil, we need to find a suitable growth condition for suppress the density of h-BN nucleation. However, we find the density of nucleation that indeed can succeed to limit by copper oxide substrate at the initial time. After then, the nucleation will spring up like mushrooms because the copper oxide reduces very fast by hydrogen gas and the nucleation side was form by boron radical that it mainly precipitates from copper foil. Therefore, we also can use the JMAK model to prove the domination of mechanism of h-BN is from nucleation. This result can indicate the h-BN is always high density of nucleation and small grain on the copper foil. It mean that if effective controls boron concentration on substrate, it will grow large grain and low density of nucleation hexagonal boron nitride.
關鍵字(中) ★ 二維材料
★ 化學氣相沉積法
★ 六方氮化硼
關鍵字(英)
論文目次 Chapter 1. Introduction 1
Chapter 2. Background 4
2.1 Introduction of hexagonal boron nitride 4
2.1.1 Hexagonal boron nitride history 4
2.1.2 Chemical vapor deposition of hexagonal boron nitride 7
2.1.3 Other method for hexagonal boron nitride massive fabrications 11
2.2 Hexagonal boron nitride morphology 19
2.2.1 Domain size 19
2.2.2 Orientation and epitaxy 23
2.3 . Raman spectroscopy 27
2.4 Etching effective in h-BN 30
2.5 Avrami equation (JMAK model) 32
Chapter 3. Experiment setup and method 39
3.1 Sample preparation 39
3.1.1 Electro-polished of copper foil 39
3.1.2 CVD hexagonal boron nitride growth 40
3.1.3 Transfer hexagonal boron nitride to SiO2 substrate 41
3.2 Scanning electron microscope 42
3.3 Micro-Raman spectroscopy 43
Chapter 4. Results and discussion 45
4.1 Characterization of the hexagonal boron nitride 46
4.2 Influence of different treatment for substrate 50
4.3 Growth mechanism with hydrogen 53
4.4 Oxidation of copper in ambient 59
4.4.1 Growth h-BN on As-copper with different hydrogen proportion and time 61
4.4.2 Growth h-BN on the copper oxide with different hydrogen proportion and time 66
Chapter 5. Conclusion 79
參考文獻 [1] J. M.Raimond, M.Brune, Q.Computation, F.DeMartini, andC.Monroe, “Electric Field Effect in Atomically Thin Carbon Films,” vol. 306, no. October, pp. 666–670, 2004.
[2] L.Banszerus, M.Schmitz, S.Engels, J.Dauber, M.Oellers, andP.Gr, “Ultra-high mobility graphene devices from chemical vapor deposition on reusable copper,” Science (80-. )., no. July, pp. 1–12, 2015.
[3] K. I.Bolotin et al., “Ultrahigh electron mobility in suspended graphene,” vol. 146, pp. 351–355, 2008.
[4] Z. D.Sha et al., “nanoindentation,” no. 1, pp. 1–6, 2014.
[5] B.Yang et al., “RSC Advances,” no. Md, pp. 54677–54683, 2014.
[6] G.Lee et al., “REPORTS High-Strength Chemical-Vapor – Deposited Graphene and Grain Boundaries,” vol. 340, no. May, pp. 1073–1077, 2013.
[7] O.Uni, “Aqueous Suspension and Characterization of Chemically Modified Graphene Sheets,” no. 14, pp. 6592–6594, 2008.
[8] F.Bonaccorso, Z.Sun, T.Hasan, andA. C.Ferrari, “Graphene photonics and optoelectronics,” vol. 4, no. September, pp. 611–622, 2010.
[9] X.Wang, L.Zhi, andK.Mu, “Transparent , Conductive Graphene Electrodes for Dye-Sensitized Solar Cells,” 2008.
[10] Y.Zhang, P.Kim, M. Y.Han, andO.Barbaros, “Energy Band-Gap Engineering of Graphene Nanoribbons,” vol. 206805, no. MAY, pp. 1–4, 2007.
[11] I.Meric, M. Y.Han, A. F.Young, B.Ozyilmaz, P.Kim, andK. L.Shepard, “Current saturation in zero-bandgap , top- gated graphene field-effect transistors,” vol. 3, no. November, 2008.
[12] A.Ramasubramaniam, D.Naveh, andE.Towe, “Tunable band gaps in bilayer transition-metal dichalcogenides,” vol. 205325, pp. 1–10, 2011.
[13] D. H.Keum et al., “Bandgap opening in few-layered monoclinic MoTe 2,” vol. 11, no. June, pp. 4–9, 2015.
[14] M.Mos et al., “Band Gap Engineering with Ultralarge Biaxial Strains in Suspended Monolayer MoS 2,” pp. 4–9, 2016.
[15] M.Kang et al., “Universal Mechanism of Band-Gap Engineering in Transition-Metal Dichalcogenides,” 2017.
[16] K.Watanabe, T.Taniguchi, andH.Kanda, “G 404 © 200 4,” vol. 3, no. June, 2004.
[17] V. L.Solozhenko, A. G.Lazarenko, J.Petitet, andA.VKanaev, “Bandgap energy of graphite-like hexagonal boron nitride,” vol. 62, pp. 1331–1334, 2001.
[18] J.Yin et al., “Boron Nitride Nanostructures: Fabrication, Functionalization and Applications,” Small, vol. 12, no. 22, pp. 2942–2968, 2016.
[19] P. R.Kidambi et al., “In Situ Observations during Chemical Vapor Deposition of Hexagonal Boron Nitride on Polycrystalline Copper,” Chem. Mater., vol. 26, no. 22, pp. 6380–6392, 2014.
[20] L. H.Li, Y.Chen, G.Behan, H.Zhang, M.Petravic, andA. M.Glushenkov, “Large-scale mechanical peeling of boron nitride nanosheets by low-energy ball milling,” J. Mater. Chem., vol. 21, no. 32, pp. 11862–11866, 2011.
[21] C. R.Dean et al., “Boron nitride substrates for high-quality graphene electronics,” Nat. Nanotechnol., vol. 5, no. 10, pp. 722–726, 2010.
[22] J.Shen, Y.He, J.Wu, C.Gao, K.Keyshar, andX.Zhang, “Liquid Phase Exfoliation of Two-Dimensional Materials by Directly Probing and Matching Surface Tension Components,” 2015.
[23] J. N.Coleman et al., “Produced by Liquid Exfoliation of Layered Materials,” Science (80-. )., vol. 331, no. 6017, pp. 568–571, 2011.
[24] J. M.Chem, Y.Wang, Z.Shi, andJ.Yin, “their composites with polybenzimidazole,” pp. 11371–11377, 2011.
[25] G. R.Bhimanapati andJ. A.Robinson, “hexagonal boron nitride nanosheets †,” no. 002, pp. 11671–11675, 2014.
[26] B.Nitride et al., “‘White Graphenes’: Boron Nitride Nanoribbons via Boron Nitride Nanotube Unwrapping,” pp. 5049–5055, 2010.
[27] K. J.Erickson et al., “Longitudinal Splitting of Boron Nitride Nanotubes for the Facile Synthesis of High Quality Boron Nitride Nanoribbons,” pp. 3221–3226, 2011.
[28] Y.Stehle et al., “Synthesis of Hexagonal Boron Nitride Monolayer: Control of Nucleation and Crystal Morphology,” Chem. Mater., vol. 27, no. 23, pp. 8041–8047, 2015.
[29] R. M.Jacobberger andM. S.Arnold, “Graphene Growth Dynamics on Epitaxial Copper Thin Films,” 2013.
[30] Y.Liu, S.Bhowmick, andB. I.Yakobson, “BN white graphene with ‘colorful’ edges: The energies and morphology,” Nano Lett., vol. 11, no. 8, pp. 3113–3116, 2011.
[31] K. K.Kim et al., “Synthesis of Monolayer Boron Nitride on Cu Foil Using Chemical Vapor Deposition,” Nano Lett., vol. xx, p. xx, 2011.
[32] W.Auwa, H. U.Suter, H.Sachdev, andT.Greber, “Synthesis of One Monolayer of Hexagonal Boron Nitride on Ni ( 111 ) from B-Trichloroborazine ( ClBNH ) 3,” no. 111, pp. 343–345, 2004.
[33] Z.Zhang, Y.Liu, Y.Yang, andB. I.Yakobson, “Growth Mechanism and Morphology of Hexagonal Boron Nitride,” Nano Lett., vol. 16, no. 2, pp. 1398–1403, 2016.
[34] L.Liu et al., “Unusual role of epilayer – substrate interactions in determining orientational relations in van der Waals epitaxy,” 2014.
[35] X.Song et al., “Chemical vapor deposition growth of large-scale hexagonal boron nitride with controllable orientation,” Nano Res., vol. 8, no. 10, pp. 3164–3176, 2015.
[36] J.Yin et al., “Aligned Growth of Hexagonal Boron Nitride Monolayer on Germanium,” no. 40, pp. 5375–5380, 2015.
[37] J.Li et al., “Growth of Polar Hexagonal Boron Nitride Monolayer on Nonpolar Copper with Unique Orientation,” pp. 1–6, 2016.
[38] R.VGorbachev et al., “Hunting for Monolayer Boron Nitride : Optical and Raman Signatures,” no. 4, pp. 465–468, 2011.
[39] R. M.Martin, “No Title,” 1981.
[40] I.Vlassiouk et al., “Role of hydrogen in chemical vapor deposition growth of large single-crystal graphene,” ACS Nano, vol. 5, no. 7, pp. 6069–6076, 2011.
[41] S.Sharma, G.Kalita, R.Vishwakarma, Z.Zulkifli, andM.Tanemura, “Opening of triangular hole in triangular-shaped chemical vapor deposited hexagonal boron nitride crystal,” Sci. Rep., vol. 5, no. May, pp. 1–9, 2015.
[42] Y. Y.Stehle et al., “Anisotropic Etching of Hexagonal Boron Nitride and Graphene: Question of Edge Terminations,” Nano Lett., vol. 17, no. 12, pp. 7306–7314, 2017.
指導教授 溫偉源(Wei-yen woon) 審核日期 2019-6-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明