博碩士論文 107222013 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:13 、訪客IP:18.225.234.234
姓名 王渝涵(Yu-Han Wang)  查詢紙本館藏   畢業系所 物理學系
論文名稱 局部還原氧化石墨烯在有支撐基板下的結構還原
(Structure Reconstruction of Reduced Locally-Oxidized Graphene with a Supporting Graphene Template)
相關論文
★ 細菌地毯微流道中的次擴散動力學★ Role of strain in the solid phase epitaxial regrowth of dopant and isovalent impurities co-doped silicon
★ hydrodynamic spreading of forces from bacterial carpet★ What types of defects are created on supported chemical vapor deposition grown graphene by scanning probe lithography in ambient?
★ 以掃描式電容顯微鏡研究硼離子在矽基板中的瞬態增強擴散行為★ 應變及摻雜相互對以磷離子佈植之碳矽基板的固態磊晶成長動力學之研究
★ 雜質在假晶型碳矽合金對張力之熱穩定性影響★ Revisiting the role of strain in solid-phase epitaxial regrowth of ion-implanted silicon
★ 利用選擇性參雜矽基板在石墨稀上局部陽極氧化反應★ Thermal stability of supersaturated carbon incorporation in silicon
★ 氧化銅上的石墨烯在快速化學氣相沉積過程中的成核以及成長動力學★ Reduction dynamics of locally oxidized graphene
★ 微小游泳粒子在固定表面的聚集現象★ Role of impurities in semiconductor: Silicon and ZnO substrate
★ The growth of multilayer graphene through chemical vapor deposition★ Characteristic of defect generated on graphene through pulsed scanning probe lithography
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 近來,石墨烯因為它具有極高的電子遷移率而引起研究界大量的關注。在眾多製造石墨烯的製程中,現在公認最有效率的大量生產方式是還原氧化石墨烯,其中的方法包括熱還原、電化學還原等等。然而,還原氧化石墨烯的產物中殘存的大量氧化官能基卻造成電子遷移率的下降。在近期的研究中,有些團隊成功地利用各種技術移除還原氧化石墨烯中大部分殘存的氧化官能基。不幸的是,拉曼分析的結果卻顯示出儘管大部份的氧化官能基被移除了,石墨烯的晶格結構並沒有辦法被修復。
在我們的研究中,我們藉由拉曼光譜技術與X射線光電子能譜技術發現,若在無序的氧化結構下層加上一層晶格匹配的有序結構,即可以改善氧化的石墨烯的結構恢復。在實驗中,我們利用氧化掃描探針微影技術各別氧化一層石墨烯的區域、兩層石墨烯的區域、跟三層石墨烯的區域。藉由確認在一層石墨烯的區域、兩層石墨烯的區域、跟三層石墨烯的區域的氧化過程只氧化最上層的石墨烯,我們即可藉由此技術成功製造出下層沒有晶格模板的、有一層晶格模板的、有兩層晶格模板的一層微影氧化石墨烯。利用X射線光電子還原後,我們發現,若下層沒有晶格模板,微影氧化石墨烯的結構會在還原後變壞。值得注意的是,若是下層有晶格模板,微影氧化石墨烯的結構能夠往化學氣相沉積石墨烯的結構恢復。
這項發現讓還原的氧化石墨烯能夠同時擁有足夠能隙,又能保有相對好的結構與電性。讓有「下一代電子材料」之稱的石墨烯能夠實至名歸。
摘要(英) Recently, graphene has attracted a great number of attentions due to its high electron mobility. However, the honeycomb structure makes it a material with zero bandgap. Researchers have found a lot of ways to open the bandgap for further applications. Among all of the methods, the reduction of graphene oxide through thermal, electrochemical, or other reduction methods is the most well-recognized efficient way to produce bandgap-opened graphene in large scale. However, in the end product, which is called reduced graphene oxide (rGO), there are too many irremovable oxygen functional groups including C-O, C=O, and COOH. These oxygen functional groups worsen its good properties. In recent publications, although some groups have successfully removed most of oxygen functional groups on rGO, Raman analysis showed that there was no way to reconstruct its lattice structure toward graphene despite the removal of oxygen functional groups. Hence, it is crucial to find a way to improve lattice reconstruction of disordered graphene.
In our work, we found that a lattice-matching ordered template underneath disordered oxidized graphene could improve the structure restoration of oxidized graphene though characterizations of μ-Raman spectroscopy (μ-RS) and μ-X-ray photoelectron microscopy (μ-XPS). In the experiment, we oxidized graphene in regions with 1 layer, 2 layer, and 3 layer through oxidation scanning probe lithography (o-SPL). The oxidation process on 1-layer, 2-layer, and 3-layer graphene of o-SPL was made sure to be top-layer oxidation only so that 1-layer o-SPL graphene without a template, with a 1-layer template, and with a 2-layer template were successfully produced. After XPS reduction, if there was no template underneath, the structure of o-SPL graphene got worse. Noticeably, the structure of o-SPL graphene with a template could successfully be restored to approach the structure of pristine CVD graphene.
It is a finding which provides a way to solve the problem of the worsened conductivity of band-gap opened graphene. The preservation of a better structure for rGO can make it deserve the title of “the anticipated candidate for electronics in the next generation.”
關鍵字(中) ★ 還原氧化石墨烯
★ 結構還原
★ 氧化式掃描探針微影術
★ 拉曼光譜
★ X射線光電子顯微術
★ X射線光電子能譜學
關鍵字(英) ★ reduced oxidized graphene
★ structure reconstruction
★ oxidation scanning probe lithography
★ Raman spectroscopy
★ X-ray photoelectron microscopy
★ X-ray photoelectron spectroscopy
論文目次 中文摘要 I
Abstract III
Contents V
List of Figures VIII
List of Tables XV
Chapter 1 Introduction 1
Chapter 2 Background 4
2.1 Graphene 6
2.2 Reduced Graphene Oxide (rGO) 18
2.3 Solid Phase Epitaxial Regrowth (SPER) 22
2.4 Atomic Force Microscopy (AFM) 24
2.5 Oxidation Scanning Probe Lithography (o-SPL) 39
2.6 Scanning Photoelectron Spectroscopy (SPEM) and micro-X-ray Photoelectron Spectroscopy (μ-XPS) 47
2.7 Micro-Raman Spectroscopy (μ-RS) 56
2.8 Twisting Angles in Multilayer Graphene 78
Chapter 3 Experimental Methods 83
3.1 Sample Preparation of pristine CVD Graphene 84
3.1.1 Copper Foil Pretreatment through Electro-polishing 84
3.1.2 Graphene Growth through CVD 86
3.1.3 Substrate Pretreatment through RCA Cleaning Process 88
3.1.4 Graphene Transfer Process 89
3.2 Oxidation of Graphene through o-SPL 92
3.3 Reduction of o-SPL Graphene through μ-XPS 93
3.4 Characterizations 94
3.4.1 Morphology through AFM 94
3.4.2 Optical Property through OM 94
3.4.3 Chemical Bonding Analysis through SPEM and μ-XPS 95
3.4.4 Lattice Structure Analysis through μ-RS 96
Chapter 4 Results and Discussion 98
4.1 Graphene Oxidation with and without a Graphene Template 99
4.2 Structure Restoration of Reduced o-SPL Graphene with a Template 109
4.3 Discussion 115
Chapter 5 Conclusion 117
Reference 118
參考文獻 (1) Novoselov, K. S.; Fal’Ko, V. I.; Colombo, L.; Gellert, P. R.; Schwab, M. G.; Kim, K.A Roadmap for Graphene. Nature 2012, 490 (7419), 192–200.
(2) Wallace, P. R.The Band Theory of Graphite. Phys. Rev. 1947, 71 (9), 622–634.
(3) Mathkar, A.; Tozier, D.; Cox, P.; Ong, P.; Galande, C.; Balakrishnan, K.; Leela Mohana Reddy, A.; Ajayan, P. M.Controlled, Stepwise Reduction and Band Gap Manipulation of Graphene Oxide. J. Phys. Chem. Lett. 2012, 3 (8), 986–991.
(4) Masubuchi, S.; Ono, M.; Yoshida, K.; Hirakawa, K.; MacHida, T.Fabrication of Graphene Nanoribbon by Local Anodic Oxidation Lithography Using Atomic Force Microscope. Appl. Phys. Lett. 2009, 94 (8).
(5) Han, M. Y.; Özyilmaz, B.; Zhang, Y.; Kim, P.Energy Band-Gap Engineering of Graphene Nanoribbons. Phys. Rev. Lett. 2007, 98 (20), 1–4.
(6) Tapasztó, L.; Dobrik, G.; Lambin, P.; Biró, L. P.Tailoring the Atomic Structure of Graphene Nanoribbons by Scanning Tunnelling Microscope Lithography. Nat. Nanotechnol. 2008, 3 (7), 397.
(7) Castro, E.V.; Novoselov, K. S.; Morozov, S.V.; Peres, N. M. R.; DosSantos, J. M. B. L.; Nilsson, J.; Guinea, F.; Geim, A. K.; Neto, A. H. C.Biased Bilayer Graphene: Semiconductor with a Gap Tunable by the Electric Field Effect. Phys. Rev. Lett. 2007, 99 (21), 8–11.
(8) Gava, P.; Lazzeri, M.; Saitta, A. M.; Mauri, F.Ab Initio Study of Gap Opening and Screening Effects in Gated Bilayer Graphene. Phys. Rev. B - Condens. Matter Mater. Phys. 2009, 79 (16), 1–13.
(9) Xia, F.; Farmer, D. B.; Lin, Y. M.; Avouris, P.Graphene Field-Effect Transistors with High on/off Current Ratio and Large Transport Band Gap at Room Temperature. Nano Lett. 2010, 10 (2), 715–718.
(10) Pereira, V. M.; Castro Neto, A. H.; Peres, N. M. R.Tight-Binding Approach to Uniaxial Strain in Graphene. Phys. Rev. B - Condens. Matter Mater. Phys. 2009, 80 (4), 1–8.
(11) Jariwala, D.; Srivastava, A.; Ajayan, P. M.Graphene Synthesis and Band Gap Opening. J. Nanosci. Nanotechnol. 2011, 11 (8), 6621–6641.
(12) Pei, S.; Cheng, H. M.The Reduction of Graphene Oxide. Carbon N. Y. 2012, 50 (9), 3210–3228.
(13) Acik, M.; Lee, G.; Mattevi, C.; Pirkle, A.; Wallace, R. M.; Chhowalla, M.; Cho, K.; Chabal, Y.The Role of Oxygen during Thermal Reduction of Graphene Oxide Studied by Infrared Absorption Spectroscopy. J. Phys. Chem. C 2011, 115 (40), 19761–19781.
(14) Chen, W.; Yan, L.; Bangal, P. R.Chemical Reduction of Graphene Oxide to Graphene by Sulfur-Containing Compounds. J. Phys. Chem. C 2010, 114 (47), 19885–19890.
(15) Boutchich, M.; Jaffré, A.; Alamarguy, D.; Alvarez, J.; Barras, A.; Tanizawa, Y.; Tero, R.; Okada, H.; Thu, T.V.; Kleider, J. P.; et al.Characterization of Graphene Oxide Reduced through Chemical and Biological Processes. J. Phys. Conf. Ser. 2013, 433 (1).
(16) Voiry, D.; Yang, J.; Kupferberg, J.; Fullon, R.; Lee, C.; Jeong, H. Y.; Shin, H. S.; Chhowalla, M.High-Quality Graphene via Microwave Reduction of Solution-Exfoliated Graphene Oxide. Science (80-. ). 2016, 353 (6306), 1413–1416.
(17) Hong, Y. Z.; Tsai, H. C.; Wang, Y. H.; Aumanen, J.; Myllyperkiö, P.; Johansson, A.; Kuo, Y. C.; Chang, L. Y.; Chen, C. H.; Pettersson, M.; et al.Reduction-Oxidation Dynamics of Oxidized Graphene: Functional Group Composition Dependent Path to Reduction. Carbon N. Y. 2018, 129 (2018), 396–402.
(18) Hong, Y.-Z.; Chiang, W.-H.; Tsai, H.-C.; Chuang, M.-C.; Kuo, Y.-C.; Chang, L.-Y.; Chen, C.-H.; White, J.-D.; Woon, W.-Y.Local Oxidation and Reduction of Graphene. Nanotechnology 2017, 28 (39), 395704.
(19) Tsai, H. C.; Shiu, H. W.; Chuang, M. C.; Chen, C. H.; Su, C. Y.; White, J. D.; Woon, W. Y.Graphene Reduction Dynamics Unveiled. 2D Mater. 2015, 2 (3).
(20) Chuang, M. C.; Chien, H. M.; Chain, Y. H.; Chi, G. C.; Lee, S. W.; Woon, W. Y.Local Anodic Oxidation Kinetics of Chemical Vapor Deposition Graphene Supported on a Thin Oxide Buffered Silicon Template. Carbon N. Y. 2013, 54, 336–342.
(21) Yan, J. A.; Xian, L.; Chou, M. Y.Structural and Electronic Properties of Oxidized Graphene. Phys. Rev. Lett. 2009, 103 (8), 1–4.
(22) Csepregi, L.; Mayer, J. W.; Sigmon, T. W.Chaneling Effect Measurements of the Recrystallization of Amorphous Si Layers on Crystal Si. Phys. Lett. A 1975, 54 (2), 157–158.
(23) Kung, K. T. Y.; Reif, R.; Knott, J. E.Low-Temperatur Process To Increase The Grain Size In Polysilicon Films. Electron. Lett. 1981, 17(17) (17), 586–588.
(24) Yamauchi, N.; Reif, R.Polycrystalline Silicon Thin Films Processed and Subseqvent Solid-Phase Crystallization : And Thin-Film Transistor Applications with Silicon Ion Implantation Theory , Experiments ,. J. Appl. Phys. 1994, 75 (May 2002), 3235–3257.
(25) Neto, A. H. C.; Guinea, F.; Peres, N. M. R.; Novoselov, K. S.; Geim, A. K.The Electronic Properties of Graphene. Rev. Mod. Phys. 2009, 81 (1), 109.
(26) Manly, B. F. J.Drawing Conclusions from Graphene. Stat. Environ. Sci. Manag. 2001, 103–132.
(27) Mermin, N. D.Crystalline Order in Two Dimensions. Phys. Rev. 1968, 176 (1), 250–254.
(28) Landau, L. D.; Lifshitz, E. M.; Pitaevskii, L. P.Statistical Physics, Part I. pergamon, Oxford 1980.
(29) Novoselov, K. S.; Geim, A. K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A. A.Electric Field Effect in Atomically Thin Carbon Films. Science (80-. ). 2004, 306 (5696), 666–669.
(30) Yazdi, G.; Iakimov, T.; Yakimova, R.Epitaxial Graphene on SiC: A Review of Growth and Characterization. Crystals 2016, 6 (5), 53.
(31) Cooper, D. R.; D’Anjou, B.; Ghattamaneni, N.; Harack, B.; Hilke, M.; Horth, A.; Majlis, N.; Massicotte, M.; Vandsburger, L.; Whiteway, E.; et al.Experimental Review of Graphene. ISRN Condens. Matter Phys. 2012, 2012.
(32) Ashcroft, N. W.; Mermin, N. D.; Rodriguez, S.Solid State Physics. AAPT 1978.
(33) Jorio, A.; Dresselhaus, M.; Saito, R.; Dresselhaus, G.Raman Spectroscopy in Graphene Related Systems. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA 2011, p 196.
(34) Painter, G. S.; Ellis, D. E.Electronic Band Structure and Optical Properties of Graphite from a Variational Approach. Phys. Rev. B 1970, 1 (12), 4747–4752.
(35) Dresselhaus, M. S.; Dresselhaus, G.; Sugihara, K.; Spain, I. L.; Goldberg, H. A.Synthesis of Graphite Fibers and Filaments. In Graphite fibers and filaments; Springer, 1988; pp 12–34.
(36) Konschuh, S.; Gmitra, M.; Fabian, J.Tight-Binding Theory of the Spin-Orbit Coupling in Graphene. Phys. Rev. B 2010, 82 (24), 245412.
(37) Novoselov, K. S.; Geim, A. K.; Morozov, S.V.; Jiang, D.; Katsnelson, M. I.; Grigorieva, I.V.; Dubonos, S.V.; Firsov, A. A.Two-Dimensional Gas of Massless Dirac Fermions in Graphene. Nature 2005, 438 (7065), 197–200.
(38) Slonczewski, J. C.; Weiss, P. R.Band Structure of Graphite. Phys. Rev. 1958, 109 (2), 272.
(39) Schafhaeutl, C.LXXXVI. On the Combinations of Carbon with Silicon and Iron, and Other Metals, Forming the Different Species of Cast Iron, Steel, and Malleable Iron. London, Edinburgh, Dublin Philos. Mag. J. Sci. 1840, 16 (106), 570–590.
(40) Hong An Wong, C.; Pumera, M.Stripping Voltammetry at Chemically Modified Graphenes. RSC Adv. 2012, 2 (14), 6068.
(41) Lerf, A.; He, H.; Forster, M.; Klinowski, J.Structure of Graphite Oxide Revisited. J. Phys. Chem. B 1998, 102 (23), 4477–4482.
(42) Titelman, G. I.; Gelman, V.; Bron, S.; Khalfin, R. L.; Cohen, Y.; Bianco-Peled, H.Characteristics and Microstructure of Aqueous Colloidal Dispersions of Graphite Oxide. Carbon N. Y. 2005, 43 (3), 641–649.
(43) Zhao, J.; Pei, S.; Ren, W.; Gao, L.; Cheng, H. M.Efficient Preparation of Large-Area Graphene Oxide Sheets for Transparent Conductive Films. ACS Nano 2010, 4 (9), 5245–5252.
(44) Hummers, W. S.; Offeman, R. E.Preparation of Graphitic Oxide. J. Am. Chem. Soc. 1958, 80 (6), 1339.
(45) Zaaba, N. I.; Foo, K. L.; Hashim, U.; Tan, S. J.; Liu, W. W.; Voon, C. H.Synthesis of Graphene Oxide Using Modified Hummers Method: Solvent Influence. Procedia Eng. 2017, 184, 469–477.
(46) Chen, J.; Li, Y.; Huang, L.; Li, C.; Shi, G.High-Yield Preparation of Graphene Oxide from Small Graphite Flakes via an Improved Hummers Method with a Simple Purification Process. Carbon N. Y. 2015, 81 (1), 826–834.
(47) Chen, J.; Yao, B.; Li, C.; Shi, G.An Improved Hummers Method for Eco-Friendly Synthesis of Graphene Oxide. Carbon N. Y. 2013, 64 (1), 225–229.
(48) Chen, T.; Zeng, B.; Liu, J. L.; Dong, J. H.; Liu, X. Q.; Wu, Z.; Yang, X. Z.; Li, Z. M.High Throughput Exfoliation of Graphene Oxide from Expanded Graphite with Assistance of Strong Oxidant in Modified Hummers Method. J. Phys. Conf. Ser. 2009, 188.
(49) Bagri, A.; Mattevi, C.; Acik, M.; Chabal, Y. J.; Chhowalla, M.; Shenoy, V. B.Structural Evolution during the Reduction of Chemically Derived Graphene Oxide. Nat. Chem. 2010, 2 (7), 581–587.
(50) Chua, C. K.; Pumera, M.Chemical Reduction of Graphene Oxide: A Synthetic Chemistry Viewpoint. Chem. Soc. Rev. 2014, 43 (1), 291–312.
(51) Renteria, J. D.; Ramirez, S.; Malekpour, H.; Alonso, B.; Centeno, A.; Zurutuza, A.; Cocemasov, A. I.; Nika, D. L.; Balandin, A. A.Strongly Anisotropic Thermal Conductivity of Free-Standing Reduced Graphene Oxide Films Annealed at High Temperature. Adv. Funct. Mater. 2015, 25 (29), 4664–4672.
(52) Ding, Y. H.; Zhang, P.; Zhuo, Q.; Ren, H. M.; Yang, Z. M.; Jiang, Y.A Green Approach to the Synthesis of Reduced Graphene Oxide Nanosheets under UV Irradiation. Nanotechnology 2011, 22 (21).
(53) Yi, M.; Shen, Z.A Review on Mechanical Exfoliation for the Scalable Production of Graphene. J. Mater. Chem. A 2015, 3 (22), 11700–11715.
(54) Zhang, Y.; Zhang, L.; Zhou, C.Review of Chemical Vapor Deposition of Graphene and Related Applications. Acc. Chem. Res. 2013, 46 (10), 2329–2339.
(55) Yan, Z.; Peng, Z.; Tour, J. M.Chemical Vapor Deposition of Graphene Single Crystals. Acc. Chem. Res. 2014, 47 (4), 1327–1337.
(56) Riedl, C.; Coletti, C.; Starke, U.Structural and Electronic Properties of Epitaxial Graphene on SiC(0001): A Review of Growth, Characterization, Transfer Doping and Hydrogen Intercalation. J. Phys. D. Appl. Phys. 2010, 43 (37).
(57) Malhi, S. D. S.; Shichijo, H.; Sanjay, S. K.; Banerjee, B.; Sundaresan, R.; Elahy, M.; Pollack, G. P.; Richardson, W. F.; Shah, A. H.; Hite, L. R.; et al.Characteristics and Three-Dimensional Integration of MOSFET’s in Small-Grain LPCVD Polycrystalline Silicon. IEEE Trans. Electron Devices 1985, 32 (2), 258–281.
(58) Kanicki, J.Amorphous & Microcrystalline Semiconductor Devices Volume II: Materials and Device Physics; Artech House Publishers, 1992; Vol. 2.
(59) Meng, Z.; Wang, M.; Wong, M.High Performance Low Temperature Metal-Induced Unilaterally Crystallized Polycrystalline Silicon Thin Film Transistors for System-on-Panel Applications. IEEE Trans. Electron Devices 2000, 47 (2), 404–409.
(60) Yamauchi, N.; Reif, R.Polycrystalline Silicon Thin Films Processed with Silicon Ion Implantation and Subsequent Solid-Phase Crystallization: Theory, Experiments, and Thin-Film Transistor Applications. J. Appl. Phys. 1994, 75 (7), 3235–3257.
(61) Krzeminski, C.; Brulin, Q.; Cuny, V.; Lecat, E.; Lampin, E.; Cleri, F.Molecular Dynamics Simulation of the Recrystallization of Amorphous Si Layers: Comprehensive Study of the Dependence of the Recrystallization Velocity on the Interatomic Potential. J. Appl. Phys. 2007, 101 (12).
(62) Morarka, S.; Rudawski, N. G.; Law, M. E.; Jones, K. S.; Elliman, R. G.Modeling Two-Dimensional Solid-Phase Epitaxial Regrowth Using Level Set Methods. J. Appl. Phys. 2009, 105 (5).
(63) Binnig, G.; Quate, C. F.; Gerber, C.Atomic Force Microscope. Phys. Rev. Lett. 1986, 56 (9), 930.
(64) Benning, G. K.Atomic Force Microscope and Method for Imaging Surfaces with Atomic Resolution. Google Patents 1988, p US4724318 A.
(65) Giessibl.Advances in Atomic Force Microscopy. 2013, 75 (July), 1–35.
(66) Meyer, G.; Amer, N. M.Simultaneous Measurement of Lateral and Normal Forces with an Optical-Beam-Deflection Atomic Force Microscope. Appl. Phys. Lett. 1990, 57 (20), 2089–2091.
(67) CONTV-A - Bruker AFM Probes https://www.brukerafmprobes.com/p-3247-contv-a.aspx/.
(68) Bhushan, B.Scanning Probe Microscopy in Nanoscience and Nanotechnology 2; Springer Science & Business Media, 2010.
(69) Albrecht, T. R.; Quate, C. F.Atomic Resolution Imaging of a Nonconductor by Atomic Force Microscopy. J. Appl. Phys. 1987, 62 (7), 2599–2602.
(70) Seo, Y.; Jhe, W.Atomic Force Microscopy and Spectroscopy. Reports Prog. Phys. 2008, 71 (1).
(71) Marrese, M.; Guarino, V.; Ambrosio, L.Atomic Force Microscopy: A Powerful Tool to Address Scaffold Design in Tissue Engineering. J. Funct. Biomater. 2017, 8 (1), 7.
(72) Contact AFM http://www.nanophys.kth.se/nanophys/facilities/nfl/afm/fast-scan/bruker-help/Content/Contact AFM/Contact AFM.htm.
(73) Lateral Force Microscopy (LFM) https://www.parksystems.com/index.php/park-spm-modes/91-standard-imaging-mode/222-lateral-force-microscopy-lfm.
(74) Colangelo, F.; Piazza, V.; Coletti, C.; Roddaro, S.; Beltram, F.; Pingue, P.Local Anodic Oxidation on Hydrogen-Intercalated Graphene Layers: Oxide Composition Analysis and Role of the Silicon Carbide Substrate. Nanotechnology 2017, 28 (10), 1–6.
(75) Martin, Y.; Williams, C. C.; Wickramasinghe, H. K.Atomic Force Microscope--Force Mapping and Profiling on a Sub 100-Åscale. J. Appl. Phys. 1987, 61 (10), 4723–4729.
(76) Zhong, Q.; Inniss, D.; Kjoller, K.; Elings, V. B.Fractured Polymer/Silica Fiber Surface Studied by Tapping Mode Atomic Force Microscopy. Surf. Sci. Lett. 1993, 290 (1–2), L688--L692.
(77) TappingMode AFM http://www.nanophys.kth.se/nanophys/facilities/nfl/afm/fast-scan/bruker-help/Content/TappingMode AFM/TappingMode AFM.htm.
(78) Lee, M.; Jhe, W.General Theory of Amplitude-Modulation Atomic Force Microscopy. Phys. Rev. Lett. 2006, 97 (3), 36104.
(79) Decreasing the Cantilever Drive Frequency http://www.nanophys.kth.se/nanophys/facilities/nfl/afm/fast-scan/bruker-help/Content/TappingMode AFM/Decreasing the Cantilever Drive Frequency.htm.
(80) Cantilever Oscillation http://www.nanophys.kth.se/nanophys/facilities/nfl/afm/fast-scan/bruker-help/Content/TappingMode AFM/Cantilever Oscillation.htm.
(81) Phase Imaging http://www.nanophys.kth.se/nanophys/facilities/nfl/afm/fast-scan/bruker-help/Content/TappingMode AFM/PhaseImaging.htm.
(82) Garcia, R.; Knoll, A. W.; Riedo, E.Advanced Scanning Probe Lithography. Nat. Nanotechnol. 2014, 9 (8), 577–587.
(83) Kenseth, J. R.; Harnisch, J. a.; Jones, V. W.; Porter, M. D.Investigation of Approaches for the Fabrication of Protein Patterns by Scanning Probe Lithography. Langmuir. 2001, pp 4105–4112.
(84) Garcia, R.; Martinez, R.V.; Martinez, J.Nano-Chemistry and Scanning Probe Nanolithographies. Chem. Soc. Rev. 2006, pp 29–38.
(85) Gottlieb, S.; Lorenzoni, M.; Evangelio, L.; Ryu, Y. K.; Rawlings, C.; Spieser, M.; Knoll, A. W.; Fernández-Regúlez, M.; Ryu, Y. K.; Rawlings, C.; et al.Thermal Scanning Probe Lithography for the Directed Self-Assembly of Block Copolymers. Nanotechnology. 2017, p 175301.
(86) Albisetti, E.; Petti, D.; Pancaldi, M.; Madami, M.; Tacchi, S.; Curtis, J.; King, W. P.; Papp, A.; Csaba, G.; Porod, W.; et al.Nanopatterning Reconfigurable Magnetic Landscapes via Thermally Assisted Scanning Probe Lithography. Nature Nanotechnology. 2016, pp 545–551.
(87) Albisetti, E.; Carroll, K. M.; Lu, X.; Curtis, J. E.; Petti, D.; Bertacco, R.; Riedo, E.Thermochemical Scanning Probe Lithography of Protein Gradients at the Nanoscale. Nanotechnology. 2016.
(88) Holzner, F.; Kuemin, C.; Paul, P.; Hedrick, J. L.; Wolf, H.; Spencer, N. D.; Duerig, U.; Knoll, A. W.Directed Placement of Gold Nanorods Using a Removable Template for Guided Assembly. Nano Letters. 2011, pp 3957–3962.
(89) Pires, D.; Hedrick, J. L.; DeSilva, A.; Frommer, J.; Gotsmann, B.; Wolf, H.; Despont, M.; Duerig, U.; Knoll, A. W.Nanoscale Three-Dimensional Patterning of Molecular Resists by Scanning Probes. Science. 2010, pp 732–735.
(90) Chen, L.; Wei, X.; Zhou, X.; Xie, Z.; Li, K.; Ruan, Q.; Chen, C.; Wang, J.; Mirkin, C. A.; Zheng, Z.Large-Area Patterning of Metal Nanostructures by Dip-Pen Nanodisplacement Lithography for Optical Applications. Small. 2017.
(91) Sugimura, H.; Uchida, T.; Kitamura, N.; Masuhara, H.Scanning Tunneling Microscope Tip-Induced Anodization for Nanofabrication of Titanium. J. Phys. Chem. 1994, 98 (16), 4352–4357.
(92) Avouris, P.; Hertel, T.; Martel, R.Atomic Force Microscope Tip-Induced Local Oxidation of Silicon: Kinetics, Mechanism, and Nanofabrication. Appl. Phys. Lett. 1997, 71 (2), 285–287.
(93) Wagner, C. D.Handbook of X-Ray Photoelectron Spectroscopy: A Reference Book of Standard Data for Use in x-Ray Photoelectron Spectroscopy; Perkin-Elmer, 1979.
(94) Kaholek, M.; Lee, W. K.; LaMattina, B.; Caster, K. C.; Zauscher, S.Fabrication of Stimulus-Responsive Nanopatterned Polymer Brushes by Scanning-Probe Lithography. Nano Letters. 2004, pp 373–376.
(95) Espinosa, F. M.; Ryu, Y. K.; Marinov, K.; Dumcenco, D.; Kis, A.; Garcia, R.Direct Fabrication of Thin Layer MoS2 Field-Effect Nanoscale Transistors by Oxidation Scanning Probe Lithography. Appl. Phys. Lett. 2015, 106 (10), 103503.
(96) Masubuchi, S.; Arai, M.; Machida, T.Atomic Force Microscopy Based Tunable Local Anodic Oxidation of Graphene. Nano Lett. 2011, 11 (11), 4542–4546.
(97) Masubuchi, S.; Ono, M.; Yoshida, K.; Hirakawa, K.; Machida, T.Fabrication of Graphene Nanoribbon by Local Anodic Oxidation Lithography Using Atomic Force Microscope. Appl. Phys. Lett. 2009, 94 (8), 82107.
(98) Dagata, J. A.; Schneir, J.; Harary, H. H.; Evans, C. J.; Postek, M. T.; Bennett, J.Modification of Hydrogen-Passivated Silicon by a Scanning Tunneling Microscope Operating in Air. Applied Physics Letters. 1990, pp 2001–2003.
(99) Thundat, T.; Nagahara, L. A.; Oden, P. I.; Lindsay, S. M.; George, M. A.; Glaunsinger, W. S.Modification of Tantalum Surfaces by Scanning Tunneling Microscopy in an Electrochemical Cell. J. Vac. Sci. Technol. A Vacuum, Surfaces, Film. 1990, 8 (4), 3537–3541.
(100) Xie, X. N.; Chung, H. J.; Sow, C. H.; Wee, A. T. S.Nanoscale Materials Patterning and Engineering by Atomic Force Microscopy Nanolithography. Materials Science and Engineering R: Reports. 2006, pp 1–48.
(101) Perez‐Murano, F.; Abadal, G.; Bamiol, N.; Aymerich, X.; Servat, J.; Gorostiza, P.; Sanz, F.Nanometer‐scale Oxidation of Si (100) Surfaces by Tapping Mode Atomic Force Microscopy. Journal of Applied Physics. 1995, p 6797.
(102) Snow, E. S.; Campbell, P. M.Fabrication of Si Nanostructures with an Atomic Force Microscope. Applied Physics Letters. 1994, pp 1932–1934.
(103) Day, H. C.; Allee, D. R.Selective Area Oxidation of Silicon with a Scanning Force Microscope. Applied Physics Letters. 1993, pp 2691–2693.
(104) Ryu, Y. K.; Garcia, R.Advanced Oxidation Scanning Probe Lithography. Nanotechnology 2017, 28 (14).
(105) Djurkovic, S.; Clemons, C. B.; Golovaty, D.; Young, G. W.Effects of the Electric Field Shape on Nano-Scale Oxidation. Surf. Sci. 2007, 601 (23), 5340–5358.
(106) Gómez-Moñivas, S.; Sáenz, J. J.; Calleja, M.; García, R.; Gomez-Monivas, S.; Saenz, J. J.; Calleja, M.; Garcia, R.Field-Induced Formation of Nanometer-Sized Water Bridges. Phys. Rev. Lett. 2003, 91 (5), 56101.
(107) Calleja, M.; Tello, M.; García, R.Size Determination of Field-Induced Water Menisci in Noncontact Atomic Force Microscopy. J. Appl. Phys. 2002, 92 (9), 5539–5542.
(108) Weeks, B. L.; Vaughn, M. W.; Deyoreo, J. J.Direct Imaging of Meniscus Formation in Atomic Force Microscopy Using Environmental Scanning Electron Microscopy. Langmuir 2005, 21 (11), 8096–8098.
(109) Giovambattista, N.; Almeida, A. B.; Alencar, A. M.; Buldyrev, S.V.Validation of Capillarity Theory at the Nanometer Scale by Atomistic Computer Simulations of Water Droplets and Bridges in Contact with Hydrophobic and Hydrophilic Surfaces. J. Phys. Chem. C 2016, 120 (3), 1597–1608.
(110) Chung, Y.-W.Practical Guide to Surface Science and Spectroscopy; Academic Press, 2001; Vol. 1.
(111) Depth of Information: XPS versus EDS http://www.nanolabtechnologies.com/Visual-guide-charts.
(112) 表面化學分析技術 http://www.ndl.narl.org.tw/docs/publication/19_4/pdf/D3.pdf.
(113) Mulder, M. H.V.Basic Principles of Membrane Technology. 1991.
(114) Bhave, R. R.Inorganic Membranes: Synthesis, Characteristics and Applications, 1991. New York Van Nostrand Reinhold. Cai, XM, al., Porous Met. Film. Fabr. by self-assembly gold nanoparticles. Thin Solid Film. 2005, 491 (1–2), 66–70.
(115) Gekas, V.; Trägårdh, G.; Hallström, B.Ultrafiltration Membrane Performance Fundamentals: 10 Years of Characterization and Fouling Studies; Swedish Foundation for Membrane Technology, 1993.
(116) Wagner, J. M.X-Ray Photoelectron Spectroscopy; Nova Science Publishers, 2011.
(117) Robinson, J. W.; Frame, E. M. S.; Frame II, G. M.Undergraduate Instrumental Analysis; CRC press, 2014.
(118) Hong, I. H.; Lee, T. H.; Yin, G. C.; Wei, D. H.; Juang, J. M.; Dann, T. E.; Klauser, R.; Chuang, T. J.; Chen, C. T.; Tsang, K. L.Performance of the SRRC Scanning Photoelectron Microscope. Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip. 2001, 467–468 (PART II), 905–908.
(119) 掃描式光電子能譜顯微儀簡介 http://140.110.206.16/SR-Course/陳家浩/掃描式光電子能譜顯微儀簡介.pdf.
(120) Ko, C. H.; Klauser, R.; Wei, D. H.; Chan, H. H.; Chuang, T. J.The Soft X-Ray Scanning Photoemission Microscopy Project at SRRC. J. Synchrotron Radiat. 1998, 5 (3), 299–304.
(121) Michette, A. G.Optical Systems for Soft X Rays; Springer, 1884.
(122) Ferrari, A. C.; Basko, D. M.Raman Spectroscopy as a Versatile Tool for Studying the Properties of Graphene. Nat. Nanotechnol. 2013, 8 (4), 235–246.
(123) Blake, P.; Hill, E. W.; Castro Neto, A. H.; Novoselov, K. S.; Jiang, D.; Yang, R.; Booth, T. J.; Geim, A. K.Making Graphene Visible. Appl. Phys. Lett. 2007, 91 (6), 63124.
(124) Casiraghi, C.; Hartschuh, A.; Lidorikis, E.; Qian, H.; Harutyunyan, H.; Gokus, T.; Novoselov, K. S.; Ferrari, A. C.Rayleigh Imaging of Graphene and Graphene Layers. Nano Lett. 2007, 7 (9), 2711–2717.
(125) Das, A.; Pisana, S.; Chakraborty, B.; Piscanec, S.; Saha, S. K.; Waghmare, U.V; Novoselov, K. S.; Krishnamurthy, H. R.; Geim, A. K.; Ferrari, A. C.; et al.Monitoring Dopants by Raman Scattering in an Electrochemically Top-Gated Graphene Transistor. Nat. Nanotechnol. 2008, 3 (4), nnano--2008.
(126) Zhao, W.; Tan, P. H.; Liu, J.; Ferrari, A. C.Intercalation of Few-Layer Graphite Flakes with FeCl3: Raman Determination of Fermi Level, Layer by Layer Decoupling, and Stability. J. Am. Chem. Soc. 2011, 133 (15), 5941–5946.
(127) Kalbac, M.; Reina-Cecco, A.; Farhat, H.; Kong, J.; Kavan, L.; Dresselhaus, M. S.The Influence of Strong Electron and Hole Doping on the Raman Intensity of Chemical Vapor-Deposition Graphene. ACS Nano 2010, 4 (10), 6055–6063.
(128) Pisana, S.; Lazzeri, M.; Casiraghi, C.; Novoselov, K. S.; Geim, A. K.; Ferrari, A. C.; Mauri, F.Breakdown of the Adiabatic Born--Oppenheimer Approximation in Graphene. Nat. Mater. 2007, 6 (3), 198.
(129) Das, A.; Chakraborty, B.; Piscanec, S.; Pisana, S.; Sood, A. K.; Ferrari, A. C.Phonon Renormalization in Doped Bilayer Graphene. Phys. Rev. B 2009, 79 (15), 155417.
(130) Yan, J.; Henriksen, E. A.; Kim, P.; Pinczuk, A.Observation of Anomalous Phonon Softening in Bilayer Graphene. Phys. Rev. Lett. 2008, 101 (13), 136804.
(131) Chen, C.-F.; Park, C.-H.; Boudouris, B. W.; Horng, J.; Geng, B.; Girit, C.; Zettl, A.; Crommie, M. F.; Segalman, R. A.; Louie, S. G.; et al.Controlling Inelastic Light Scattering Quantum Pathways in Graphene. Nature 2011, 471 (7340), 617.
(132) Yan, J.; Zhang, Y.; Kim, P.; Pinczuk, A.Electric Field Effect Tuning of Electron-Phonon Coupling in Graphene. Phys. Rev. Lett. 2007, 98 (16), 166802.
(133) Casiraghi, C.; Pisana, S.; Novoselov, K. S.; Geim, A. K.; Ferrari, A. C.Raman Fingerprint of Charged Impurities in Graphene. Appl. Phys. Lett. 2007, 91 (23), 233108.
(134) Casiraghi, C.; Hartschuh, A.; Qian, H.; Piscanec, S.; Georgi, C.; Fasoli, A.; Novoselov, K. S.; Basko, D. M.; Ferrari, A. C.Raman Spectroscopy of Graphene Edges. Nano Lett. 2009, 9 (4), 1433–1441.
(135) Cong, C.; Yu, T.; Wang, H.Raman Study on the G Mode of Graphene for Determination of Edge Orientation. ACS Nano 2010, 4 (6), 3175–3180.
(136) Ryu, S.; Maultzsch, J.; Han, M. Y.; Kim, P.; Brus, L. E.Raman Spectroscopy of Lithographically Patterned Graphene Nanoribbons. ACS Nano 2011, 5 (5), 4123–4130.
(137) Gupta, A. K.; Russin, T. J.; Gutiérrez, H. R.; Eklund, P. C.Probing Graphene Edges via Raman Scattering. ACS Nano 2008, 3 (1), 45–52.
(138) You, Y.; Ni, Z.; Yu, T.; Shen, Z.Edge Chirality Determination of Graphene by Raman Spectroscopy. Appl. Phys. Lett. 2008, 93 (16), 163112.
(139) Basko, D. M.Boundary Problems for Dirac Electrons and Edge-Assisted Raman Scattering in Graphene. Phys. Rev. B 2009, 79 (20), 205428.
(140) Huang, M.; Yan, H.; Heinz, T. F.; Hone, J.Probing Strain-Induced Electronic Structure Change in Graphene by Raman Spectroscopy. Nano Lett. 2010, 10 (10), 4074–4079.
(141) Mohr, M.; Maultzsch, J.; Thomsen, C.Splitting of the Raman 2 D Band of Graphene Subjected to Strain. Phys. Rev. B 2010, 82 (20), 201409.
(142) Yoon, D.; Son, Y.-W.; Cheong, H.Strain-Dependent Splitting of the Double-Resonance Raman Scattering Band in Graphene. Phys. Rev. Lett. 2011, 106 (15), 155502.
(143) Mohiuddin, T. M. G.; Lombardo, A.; Nair, R. R.; Bonetti, A.; Savini, G.; Jalil, R.; Bonini, N.; Basko, D. M.; Galiotis, C.; Marzari, N.; et al.Uniaxial Strain in Graphene by Raman Spectroscopy: G Peak Splitting, Grüneisen Parameters, and Sample Orientation. Phys. Rev. B 2009, 79 (20), 205433.
(144) Ni, Z. H.; Yu, T.; Lu, Y. H.; Wang, Y. Y.; Feng, Y. P.; Shen, Z. X.Uniaxial Strain on Graphene: Raman Spectroscopy Study and Band-Gap Opening. ACS Nano 2008, 2 (11), 2301–2305.
(145) Proctor, J. E.; Gregoryanz, E.; Novoselov, K. S.; Lotya, M.; Coleman, J. N.; Halsall, M. P.Graphene under Hydrostatic Pressure. arXiv Prepr. arXiv0905.3103 2009.
(146) Huang, M.; Yan, H.; Chen, C.; Song, D.; Heinz, T. F.; Hone, J.Phonon Softening and Crystallographic Orientation of Strained Graphene Studied by Raman Spectroscopy. Proc. Natl. Acad. Sci. 2009, 106 (18), 7304–7308.
(147) Ferrari, A. C.Raman Spectroscopy of Graphene and Graphite: Disorder, Electron--Phonon Coupling, Doping and Nonadiabatic Effects. Solid State Commun. 2007, 143 (1–2), 47–57.
(148) Venezuela, P.; Lazzeri, M.; Mauri, F.Theory of Double-Resonant Raman Spectra in Graphene: Intensity and Line Shape of Defect-Induced and Two-Phonon Bands. Phys. Rev. B 2011, 84 (3), 35433.
(149) Lucchese, M. M.; Stavale, F.; Ferreira, E. H. M.; Vilani, C.; Moutinho, M. V. O.; Capaz, R. B.; Achete, C. A.; Jorio, A.Quantifying Ion-Induced Defects and Raman Relaxation Length in Graphene. Carbon N. Y. 2010, 48 (5), 1592–1597.
(150) Cançado, L. G.; Jorio, A.; Ferreira, E. H. M.; Stavale, F.; Achete, C. A.; Capaz, R. B.; Moutinho, M. V. O.; Lombardo, A.; Kulmala, T. S.; Ferrari, A. C.Quantifying Defects in Graphene via Raman Spectroscopy at Different Excitation Energies. Nano Lett. 2011, 11 (8), 3190–3196.
(151) Byun, I. S.; Yoon, D.; Choi, J. S.; Hwang, I.; Lee, D. H.; Lee, M. J.; Kawai, T.; Son, Y. W.; Jia, Q.; Cheong, H.; et al.Nanoscale Lithography on Monolayer Graphene Using Hydrogenation and Oxidation. ACS Nano 2011, 5 (8), 6417–6424.
(152) Gokus, T.; Nair, R. R.; Bonetti, A.; Bohmler, M.; Lombardo, A.; Novoselov, K. S.; Geim, A. K.; Ferrari, A. C.; Hartschuh, A.Making Graphene Luminescent by Oxygen Plasma Treatment. ACS Nano 2009, 3 (12), 3963–3968.
(153) Elias, D. C.; Nair, R. R.; Mohiuddin, T. M. G.; Morozov, S.V; Blake, P.; Halsall, M. P.; Ferrari, A. C.; Boukhvalov, D. W.; Katsnelson, M. I.; Geim, A. K.; et al.Control of Graphene’s Properties by Reversible Hydrogenation: Evidence for Graphane. Science (80-. ). 2009, 323 (5914), 610–613.
(154) Nair, R. R.; Ren, W. C.; Jalil, R.; Diaz, I.; Kravets, V. G.; Britnell, L.; Blake, P.; Schedin, F.; Mayorov, A. S.; Yuan, S.; et al.Fluorographene: Mechanically Strong and Thermally Stable Two-Dimensional Wide-Gap Semiconductor. Small 2010, 6, 2877–2884.
(155) Ni, Z. H.; Ponomarenko, L. A.; Nair, R. R.; Yang, R.; Anissimova, S.; Grigorieva, I.V; Schedin, F.; Blake, P.; Shen, Z. X.; Hill, E. H.; et al.On Resonant Scatterers as a Factor Limiting Carrier Mobility in Graphene. Nano Lett. 2010, 10 (10), 3868–3872.
(156) Chen, J.-H.; Cullen, W. G.; Jang, C.; Fuhrer, M. S.; Williams, E. D.Defect Scattering in Graphene. Phys. Rev. Lett. 2009, 102 (23), 236805.
(157) Balandin, A. A.; Ghosh, S.; Bao, W.; Calizo, I.; Teweldebrhan, D.; Miao, F.; Lau, C. N.Superior Thermal Conductivity of Single-Layer Graphene. Nano Lett. 2008, 8 (3), 902–907.
(158) Bonini, N.; Lazzeri, M.; Marzari, N.; Mauri, F.Phonon Anharmonicities in Graphite and Graphene. Phys. Rev. Lett. 2007, 99 (17), 176802.
(159) May, P.; Lazzeri, M.; Venezuela, P.; Herziger, F.; Callsen, G.; Reparaz, J. S.; Hoffmann, A.; Mauri, F.; Maultzsch, J.Signature of the Two-Dimensional Phonon Dispersion in Graphene Probed by Double-Resonant Raman Scattering. Phys. Rev. B 2013, 87 (7), 75402.
(160) Grüneis, A.; Serrano, J.; Bosak, A.; Lazzeri, M.; Molodtsov, S. L.; Wirtz, L.; Attaccalite, C.; Krisch, M.; Rubio, A.; Mauri, F.; et al.Phonon Surface Mapping of Graphite: Disentangling Quasi-Degenerate Phonon Dispersions. Phys. Rev. B 2009, 80 (8), 85423.
(161) Basko, D. M.; Aleiner, I. L.Interplay of Coulomb and Electron-Phonon Interactions in Graphene. Phys. Rev. B 2008, 77 (4), 41409.
(162) Basko, D. M.Calculation of the Raman G Peak Intensity in Monolayer Graphene: Role of Ward Identities. New J. Phys. 2009, 11 (9), 95011.
(163) Lazzeri, M.; Attaccalite, C.; Wirtz, L.; Mauri, F.Impact of the Electron-Electron Correlation on Phonon Dispersion: Failure of LDA and GGA DFT Functionals in Graphene and Graphite. Phys. Rev. B 2008, 78 (8), 81406.
(164) Basko, D. M.Theory of Resonant Multiphonon Raman Scattering in Graphene. Phys. Rev. B 2008, 78 (12), 125418.
(165) Lazzeri, M.; Mauri, F.Nonadiabatic Kohn Anomaly in a Doped Graphene Monolayer. Phys. Rev. Lett. 2006, 97 (26), 266407.
(166) Ando, T.Magnetic Oscillation of Optical Phonon in Graphene. J. Phys. Soc. Japan 2007, 76 (2), 24712.
(167) Goerbig, M. O.; Fuchs, J.-N.; Kechedzhi, K.; Fal’ko, V. I.Filling-Factor-Dependent Magnetophonon Resonance in Graphene. Phys. Rev. Lett. 2007, 99 (8), 87402.
(168) Yan, J.; Goler, S.; Rhone, T. D.; Han, M.; He, R.; Kim, P.; Pellegrini, V.; Pinczuk, A.Observation of Magnetophonon Resonance of Dirac Fermions in Graphite. Phys. Rev. Lett. 2010, 105 (22), 227401.
(169) Faugeras, C.; Kossacki, P.; Nicolet, A. A. L.; Orlita, M.; Potemski, M.; Mahmood, A.; Basko, D. M.Probing the Band Structure of Quadri-Layer Graphene with Magneto-Phonon Resonance. New J. Phys. 2012, 14 (9), 95007.
(170) Faugeras, C.; Kossacki, P.; Basko, D. M.; Amado, M.; Sprinkle, M.; Berger, C.; DeHeer, W. A.; Potemski, M.Effect of a Magnetic Field on the Two-Phonon Raman Scattering in Graphene. Phys. Rev. B 2010, 81 (15), 155436.
(171) Kim, Y.; Ma, Y.; Imambekov, A.; Kalugin, N. G.; Lombardo, A.; Ferrari, A. C.; Kono, J.; Smirnov, D.Magnetophonon Resonance in Graphite: High-Field Raman Measurements and Electron-Phonon Coupling Contributions. Phys. Rev. B 2012, 85 (12), 121403.
(172) Faugeras, C.; Amado, M.; Kossacki, P.; Orlita, M.; Kühne, M.; Nicolet, A. A. L.; Latyshev, Y. I.; Potemski, M.Magneto-Raman Scattering of Graphene on Graphite: Electronic and Phonon Excitations. Phys. Rev. Lett. 2011, 107 (3), 36807.
(173) Kossacki, P.; Faugeras, C.; Kühne, M.; Orlita, M.; Nicolet, A. A. L.; Schneider, J. M.; Basko, D. M.; Latyshev, Y. I.; Potemski, M.Electronic Excitations and Electron-Phonon Coupling in Bulk Graphite through Raman Scattering in High Magnetic Fields. Phys. Rev. B 2011, 84 (23), 235138.
(174) Faugeras, C.; Amado, M.; Kossacki, P.; Orlita, M.; Sprinkle, M.; Berger, C.; DeHeer, W. A.; Potemski, M.Tuning the Electron-Phonon Coupling in Multilayer Graphene with Magnetic Fields. Phys. Rev. Lett. 2009, 103 (18), 186803.
(175) Tan, P. H.; Han, W. P.; Zhao, W. J.; Wu, Z. H.; Chang, K.; Wang, H.; Wang, Y. F.; Bonini, N.; Marzari, N.; Pugno, N.; et al.The Shear Mode of Multilayer Graphene. Nat. Mater. 2012, 11 (4), 294.
(176) Lui, C. H.; Malard, L. M.; Kim, S.; Lantz, G.; Laverge, F. E.; Saito, R.; Heinz, T. F.Observation of Layer-Breathing Mode Vibrations in Few-Layer Graphene through Combination Raman Scattering. Nano Lett. 2012, 12 (11), 5539–5544.
(177) Lui, C. H.; Heinz, T. F.Measurement of Layer Breathing Mode Vibrations in Few-Layer Graphene. Phys. Rev. B 2013, 87 (12), 121404.
(178) Sato, K.; Park, J. S.; Saito, R.; Cong, C.; Yu, T.; Lui, C. H.; Heinz, T. F.; Dresselhaus, G.; Dresselhaus, M. S.Raman Spectra of Out-of-Plane Phonons in Bilayer Graphene. Phys. Rev. B 2011, 84 (3), 35419.
(179) Herziger, F.; May, P.; Maultzsch, J.Layer-Number Determination in Graphene by out-of-Plane Phonons. Phys. Rev. B 2012, 85 (23), 235447.
(180) Oshima, C.; Aizawa, T.; Souda, R.; Ishizawa, Y.; Sumiyoshi, Y.Surface Phonon Dispersion Curves of Graphite (0001) over the Entire Energy Region. Solid State Commun. 1988, 65 (12), 1601–1604.
(181) Jishi, R. A.; Venkataraman, L.; Dresselhaus, M. S.; Dresselhaus, G.Phonon Modes in Carbon Nanotubules. Chem. Phys. Lett. 1993, 209 (1–2), 77–82.
(182) Maultzsch, J.; Reich, S.; Thomsen, C.; Requardt, H.; Ordejón, P.Phonon Dispersion in Graphite. Phys. Rev. Lett. 2004, 92 (7), 75501.
(183) Beams, R.; Gustavo Can�ado, L.; Novotny, L.Raman Characterization of Defects and Dopants in Graphene. J. Phys. Condens. Matter 2015, 27 (8).
(184) Pimenta, M. A.; Dresselhaus, G.; Dresselhaus, M. S.; Cancado, L. G.; Jorio, A.; Saito, R.Studying Disorder in Graphite-Based Systems by Raman Spectroscopy. Phys. Chem. Chem. Phys. 2007, 9 (11), 1276–1290.
(185) Thomsen, C.; Reich, S.Double Resonant Raman Scattering in Graphite. Phys. Rev. Lett. 2000, 85 (24), 5214.
(186) Saito, R.; Jorio, A.; Souza Filho, A. G.; Dresselhaus, G.; Dresselhaus, M. S.; Pimenta, M. A.Probing Phonon Dispersion Relations of Graphite by Double Resonance Raman Scattering. Phys. Rev. Lett. 2001, 88 (2), 27401.
(187) Eckmann, A.; Felten, A.; Mishchenko, A.; Britnell, L.; Krupke, R.; Novoselov, K. S.; Casiraghi, C.Probing the Nature of Defects in Graphene by Raman Spectroscopy. Nano Lett. 2012, 12 (8), 3925–3930.
(188) Lespade, P.; Marchand, A.; Couzi, M.; Cruege, F.Caracterisation de Materiaux Carbones Par Microspectrometrie Raman. Carbon N. Y. 1984, 22 (4–5), 375–385.
(189) Beams, R.; Cançado, L. G.; Novotny, L.Low Temperature Raman Study of the Electron Coherence Length near Graphene Edges. Nano Lett. 2011, 11 (3), 1177–1181.
(190) Cancado, L. G.; Pimenta, M. A.; Neves, B. R. A.; Dantas, M. S. S.; Jorio, A.Influence of the Atomic Structure on the Raman Spectra of Graphite Edges. Phys. Rev. Lett. 2004, 93 (24), 247401.
(191) Zandiatashbar, A.; Lee, G. H.; An, S. J.; Lee, S.; Mathew, N.; Terrones, M.; Hayashi, T.; Picu, C. R.; Hone, J.; Koratkar, N.Effect of Defects on the Intrinsic Strength and Stiffness of Graphene. Nat. Commun. 2014, 5, 1–9.
(192) Eckmann, A.; Felten, A.; Verzhbitskiy, I.; Davey, R.; Casiraghi, C.Raman Study on Defective Graphene: Effect of the Excitation Energy, Type, and Amount of Defects. Phys. Rev. B - Condens. Matter Mater. Phys. 2013, 88 (3), 1–11.
(193) Vollebregt, S.; Ishihara, R.; Tichelaar, F. D.; Hou, Y.; Beenakker, C. I. M.Influence of the Growth Temperature on the First and Second-Order Raman Band Ratios and Widths of Carbon Nanotubes and Fibers. Carbon N. Y. 2012, 50 (10), 3542–3554.
(194) Claramunt, S.; Varea, A.; López-Díaz, D.; Velázquez, M. M.; Cornet, A.; Cirera, A.The Importance of Interbands on the Interpretation of the Raman Spectrum of Graphene Oxide. J. Phys. Chem. C 2015, 119 (18), 10123–10129.
(195) Brihuega, I.; Mallet, P.; González-Herrero, H.; deLaissardière, G. T.; Ugeda, M. M.; Magaud, L.; Gómez-Rodr’iguez, J. M.; Ynduráin, F.; Veuillen, J.-Y.Unraveling the Intrinsic and Robust Nature of van Hove Singularities in Twisted Bilayer Graphene by Scanning Tunneling Microscopy and Theoretical Analysis. Phys. Rev. Lett. 2012, 109 (19), 196802.
(196) Kim, K.; Coh, S.; Tan, L. Z.; Regan, W.; Yuk, J. M.; Chatterjee, E.; Crommie, M. F.; Cohen, M. L.; Louie, S. G.; Zettl, A.Raman Spectroscopy Study of Rotated Double-Layer Graphene: Misorientation-Angle Dependence of Electronic Structure. Phys. Rev. Lett. 2012, 108 (24), 1–6.
(197) Luo, Z.; Lu, Y.; Singer, D. W.; Berck, M. E.; Somers, L. A.; Goldsmith, B. R.; Johnson, A. T. C.Effect of Substrate Roughness and Feedstock Concentration on Growth of Wafer-Scale Graphene at Atmospheric Pressure. Chem. Mater. 2011, 23 (6), 1441–1447.
(198) Cherian, C. T.; Giustiniano, F.; Martin-Fernandez, I.; Andersen, H.; Balakrishnan, J.; Özyilmaz, B.“Bubble-Free” Electrochemical Delamination of CVD Graphene Films. Small 2015, 11 (2), 189–194.
(199) Chien, H. M.; Chuang, M. C.; Tsai, H. C.; Shiu, H. W.; Chang, L. Y.; Chen, C. H.; Lee, S. W.; White, J. D.; Woon, W. Y.On the Nature of Defects Created on Graphene by Scanning Probe Lithography under Ambient Conditions. Carbon N. Y. 2014, 80 (1), 318–324.
(200) Dago, A. I.; Sangiao, S.; Fernández-Pacheco, R.; DeTeresa, J. M.; Garcia, R.Chemical and Structural Analysis of Sub-20 Nm Graphene Patterns Generated by Scanning Probe Lithography. Carbon N. Y. 2018, 129, 281–285.
(201) Alaboson, J. M. P.; Wang, Q. H.; Kellar, J. A.; Park, J.; Elam, J. W.; Pellin, M. J.; Hersam, M. C.Conductive Atomic Force Microscope Nanopatterning of Epitaxial Graphene on SiC(0001) in Ambient Conditions. Adv. Mater. 2011, 23 (19), 2181–2184.
(202) Schmucker, S. W.; Cress, C. D.; Culbertson, J. C.; Beeman, J. W.; Dubon, O. D.; Robinson, J. T.Raman Signature of Defected Twisted Bilayer Graphene. Carbon N. Y. 2015, 93, 250–257.
(203) Kumar, P.V.; Bardhan, N. M.; Chen, G. Y.; Li, Z.; Belcher, A. M.; Grossman, J. C.New Insights into the Thermal Reduction of Graphene Oxide: Impact of Oxygen Clustering. Carbon N. Y. 2016, 100, 90–98.
(204) Kumar, P.V.; Bardhan, N. M.; Tongay, S.; Wu, J.; Belcher, A. M.; Grossman, J. C.Scalable Enhancement of Graphene Oxide Properties by Thermally Driven Phase Transformation. Nat. Chem. 2014, 6 (2), 151–158.
指導教授 溫偉源(Wei-Yen Woon) 審核日期 2019-6-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明