博碩士論文 107222012 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:38 、訪客IP:3.136.236.117
姓名 胡皓為(Hao-Wei Hu)  查詢紙本館藏   畢業系所 物理學系
論文名稱 二維冷微粒電漿液體的微觀聲紊波
(Microscopic acoustic wave turbulence in cold 2D dusty plasma liquids)
相關論文
★ 二加一維鏈狀微粒電漿液體微觀運動與結構之實驗研究★ 剪力下的庫倫流體微觀黏彈性反應
★ 強耦合微粒電漿中的結構與動力行為研究★ 脈衝雷射誘發之雷漿塵爆
★ 強耦合微粒電漿中脈衝雷射引發電漿微泡★ 二維強耦合微粒電漿方向序的時空尺度律
★ 二維微粒庫倫液體中集體激發微觀動力研究★ 超薄二維庫侖液體的整齊行為
★ 超薄二維微粒電漿庫侖流的微觀運動行為★ 微米狹縫中之脈衝雷射誘發二維氣泡相互作用
★ 介觀微粒庫倫液體之流變學★ 二維神經網路系統之集體發火動力學行為
★ 大白鼠腦皮質層神經元網路之同步發放行為研究★ 二維團簇腦神經網路之同步發火
★ 二維微粒電漿液體微觀結構之記憶行為★ 微粒電漿中電漿微泡的生成與交互作用之動力行為研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 受外力驅動下,紊波 (Wave turbulence) 存在於許多非線性系統中,其振幅與相位均被強力地調製,造成連續頻譜與多尺度動力行為。過去的研究主要探討色散關係、非高斯動力學、以及多重碎形等,但鮮少著重於時空間多尺度同調波形的動力行為。此外,先前研究主要著重巨觀連續系統,在不連續系統中紊波是否存在跟其時空間同調波形動力學仍為未探討重要議題。
微觀不連續尺度下,冷液體為強耦合、非線性、多體的系統,粒子之間的作用力與熱擾動相互競爭下,導致不同三角晶格排列的多重晶塊,並被缺陷環繞,其粒子呈現多尺度動力行為,晶塊的形成使受熱擾動激發的聲波能傳遞於冷液體中,但尚未以紊波的觀點探討相對應的動力學行為。
本研究藉由接近凝固點的微粒電漿冷液體,探討微觀不連續紊波系統中,受熱擾動激發的多尺度聲子如何在晶格中傳遞,利用Hilbert Huang transform拆解粒子間震盪之連續頻譜,首次將多尺度粒子運動拆解成許多不同尺度的聲波模態,不同尺度聲波模態能於時空間受激發、傳播、以及湮滅,其中不同尺度模態之同調(coherence)團簇在時空中呈現冪次律分布。另外發現小尺度和大尺度聲波模態分別容易出現在穩定與不穩定結構處,且相鄰尺度的聲波模態之間存在著交互作用。也發現導致粒子滯-滑式(stick-slip type)區塊旋轉的原因為熱擾動誘發時空中聲波模態的同步消長。
摘要(英) Under strong external drive, macroscopic wave turbulence with a continuous power spectrum ubiquitously occurs in various nonlinear continuous media, such as water surface, chemical systems, nonlinear optical media, and plasmas. Previous studies mainly focused on dynamical behaviors such as dispersion relations, scaling behaviors, energy cascades, non-Gaussian behaviors, and multifractalities, but have paid less attention on the spatiotemporal coherent behaviors at various scales. Beyond the continuous limit, whether thermally excited microscopic acoustic wave turbulence occurs, and the corresponding spatiotemporal coherent behaviors at various scales at the discrete level still remain open fundamental issues.
Microscopically, the cold liquid around freezing is a nonlinear discrete many-body system. The competition between mutual interaction and thermal agitation leads to the crystalline ordered domains (CODs) with different lattice orientations surrounded with defects. Waves are allowed to propagate in CODs. However, those waves have never been investigated from the wave turbulence view, especially their spatiotemporal coherence at different scales.
In this work, we experimentally demonstrate the observation of thermally excited microscopic acoustic wave turbulence at the discrete level in a quasi-2D cold dusty plasma liquid formed by negatively charged micro-meter sized particle suspended in a low pressure Ar discharge. Through multidimensional complementary ensemble empirical mode decomposition from Hilbert-Huang transform, the relative transverse displacement of dust particle with continuous power spectrum is decomposed into several traveling wave modes with different spatiotemporal scales. It is found that all coherent wave modes exhibit intermittent excitation, propagation, scattering, and annihilation in the form of clusters in the xyt space. Their cluster size distributions rescaled by their own spatiotemporal scales collapse into a single power-law distribution, which manifests the self-similar behavior of different wave modes, akin to the self-similar dynamics of coherent excitations in other nonlinear systems. The poor particle interlocking in the region with poor structural order allows easier excitations of the slow modes with large envelope, which leads to the positive correlation between the envelopes of adjacent modes. The sudden spatiotemporal phase synchronization of slow wave modes with large envelopes can switch the particle motion from cage rattling to cooperative hopping.
關鍵字(中) ★ 微粒電漿
★ 聲紊波
關鍵字(英) ★ Dusty plasma
★ Wave turbulence
論文目次 Ch.1 Introduction...1

Ch.2 Background...2
Ch.2.1 Wave turbulence and coherent excitation...5
Ch.2.1.1 Wave in nonlinear extended media...5
Ch.2.1.2 Coherent excitation...5
Ch.2.2 Microscopic structures and motions in nonlinearly coupled many body system...7
Ch.2.2.1 Microscopic structures and phonons...7
Ch.2.2.2 Heterogeneous motion and structural rearrangement...8

Ch.3 Experimental setup and data analysis...10
Ch.3.1 Experimental setup...10
Ch.3.2 Data analysis...10
Ch.3.2.1 Bond orientational order...11
Ch.3.2.2 Relative transverse displacement...12
Ch.3.2.3 Empirical mode decomposition...13

Ch.4 Result and Discussion...16
Ch.4.1 Heterogeneous structures and motions in cold liquid...16
Ch.4.2 Decomposition of relative transverse displacement into multiscale wave modes...19
Ch.4.2.1 Decomposing relative transverse displacement...19
Ch.4.2.2 Heterogeneous excitation of decomposed mode in the xy plane...21
Ch.4.2.3 Spatiotemporal behavior of decomposed mode...24
Ch.4.3 Self-similar scale-free coherent excitations of decomposed wave modes...25
Ch.4.4 Correlation between local structure and modes with different scales...26

Ch.5 Conclusion...30
Reference...32
參考文獻 [1] E. Falcon, C. Laroche, and S. Fauve, Phys. Rev. Lett. 98, 094503 (2007).
[2] H. Punzmann, M. G. Shats, and H. Xia, Phys. Rev. Lett. 103, 064502 (2009).
[3] A. S. Mikhailov and K. Showalter, Phys. Rep. 425, 79 (2006).
[4] D. Pierangeli, F. DiMei, G. DiDomenico, A. J. Agranat, C. Conti, and E. DelRe, Phys. Rev. Lett. 117, 183902 (2016).
[5] J. Pramanik, B. M. Veeresha, G. Prasad, A. Sen, and P. K. Kaw, Phys. Lett. A 312, 84 (2003).
[6] Y. Y. Tsai, M. C. Chang, and L. I, Phys. Rev. E 86, 045402 (R) (2012).
[7] P. C. Lin and L. I, Phys. Rev. Lett. 120 135004 (2018).
[8] F. H. Stillinger, J. Chem. Phys. 89, 6461 (1988).
[9] E. R. Weeks, J. C. Crocker, A. C. Levitt, A. Schofield, and D. A. Weitz, Science 287, 627 (2000).
[10] L. Assoud, F. Ebert, P. Keim, R. Messina, G. Maret, and H. Lowen, Phys. Rev. Lett. 102, 238301 (2009).
[11] R. Candelier, A. Widmer-Cooper, J. K. Kummerfeld, O. Dauchot, G. Biroli, P. Harrowel, and D. R. Reichman, Phys. Rev. Lett. 105, 135702 (2010).
[12] Y. J. Lai and L. I, Phys. Rev. Lett. 89, 155002 (2002).
[13] C. Yang, C. W. Io, and L. I, Phys. Rev. Lett. 109, 225003 (2012).
[14] Y. S. Su, Y. H. Liu, and L. I, Phys. Rev. Lett. 109, 195002 (2012).
[15] Y. S. Su, V. W. Io, and L. I., Phys. Rev. E 86, 016405 (2012).
[16] H. Shintani and H. Tanaka, Nat. Mater. 7, 870-887 (2008).
[17] R. Zargar, J. Russo, P. Schall, H. Tanaka, and D. Bonn, Europhys. Lett. 108, 38002 (2014).
[18] M. L. Manning and A. J. Liu, Phys. Rev. Lett. 107, 108302 (2011).
[19] K. Chen, M. L. Manning, P. J. Yunker, W. G. Ellenbroek, Z. Zhang, A. J. Liu, and A. G. Yodh, Phys. Rev. Lett. 107, 108301 (2011).
[20] A. Ghosh, V. Chikkadi, P. Schall, and D. Bonn, Phys. Rev. Lett. 107, 188303 (2011).
[21] A. Widmer-Cooper and P. Harrowell, Phys. Rev. Lett. 96, 185701 (2006).
[22] L. Berthier and R. L. Jack, Phys. Rev. E. 76, 041509 (2007).
[23] M. Farge, G. Pellegrino, and K. C. Schneider, Phys. Rev. Lett. 87, 054501 (2001).
[24] M. Farge, Annu. Rev. Fluid Mech. 24, 395 (1992).
[25] S. Nunomura, S. Zhadanov, D. Samdonov, and G. Morfill, Phys. Rev. Lett. 94, 045001 (2005)
[26] V. Nosenko, J. Goree, and A. Piel, Phys. Rev. Lett. 97, 115001 (2006).
[27] A. Piel, D. Block, A. Melzer, M. Mulsow, J. Schablinski, A. Schella, F. Wieben, and J. Wilms, Eur. Phys. J. D. 72, 80 (2018).
[28] L. Couedel, V. Nosenko, M. Rubin-Zuzic, S. Zhdanov, Y. Elskens, T. Hall, and A. V. Ivlev, Phys. Rev. E 97, 043206 (2018).
[29] C. A. Knapek, D. Samsonov, S. Zhdanov, U. Konopka, and G. E. Morfill, Phys. Rev. Lett. 98, 015004 (2007).
[30] Y. Feng, J. Goree, and B. Liu, Phys. Rev. Lett. 100, 205007 (2008).
[31] G. E. Morfill and A. V. Ivlev, Rev. Mod. Phys. 81, 1353 (2009).
[32] N. P. Kryuchkov, E. V. Yakovlev, E. A. Gorbunov, L. Couedel, A. M. Lipaev, and S. O. Yurchenko, Phys. Rev. Lett. 121, 075003 (2018).
[33] C. Yang. W. Wang, and L. I Phys. Rev. E 93, 013202 (2016)
[34] J. Ashwin and A. Sen, Phys. Rev. Lett. 114, 055002 (2015).
[35] M. Nambu, S. V. Vladimirov, and P. K. Shukla, Phys. Lett. A 203, 40 (1995).
[36] N. E. Huang, Z. Shen, S. R. Long, M. C. Wu, H. H. Shih, Q. Zheng, N. C. Yen, C. C. Tung, and H. H. Liu, Proc. R. Soc. A 454, 903 (1998).
[37] N. E. Huang, M. C. Wu, S. R. Long, S. S. P. Shen, W. Qu, P. Gloersen, and K. L. Fan, Proc. R. Soc. Lond. A 459, 2317 (2003)
[38] N. E. Huang and Z. A. Wu, Rev. Geophys. 46, RG2006 (2008)
[39] J. R. Yeh, J. S. Shieh and N. E. Huang, Adv. Adapt. Data. Anal. 02, 135 (2010)
[40] C. Kharif, E. Pelinovsky, and A. Slunyaev, Rogue Waves in the Ocean (Speinger, Heidelberg, 2009).
[41] A. Chabchoub, N. P. Hoffman, and N. Akhmediev. Phys. Rev. Lett. 106, 204502 (2011).
[42] M. Shats, H. Punzmann, and H. Xia, Phys. Rev. Lett. 104, 104503 (2010).
[43] H. Xia, T. Maimbourg, H. Punzmann, and M. Shats, Phys. Rev. Lett. 109, 114502 (2012).
[44] J. Wang, S. Kadar, P. Jung, and K. Showalter, Phys. Rev. Lett. 82, 855 (1999).
[45] I. Sendiña-Nadal, D. Roncaglia, D. Vives, V. Pérez-Muñuzuri, M. Gómez-Gesteira, V. Pérez-Villar, J. Echave, J. Casademunt, L. Ramı´rez-Piscina, and F. Sagués, Phys.Rev. E 58, R1183–R1186 (1998).
[46] J. Goree, Z. Donko, and P. Hartmann, Phys. Rev. E 85, 066401 (2012).
[47] L. Couedel, V. Nosenko, A. V. Ivlev, S. K. Zhdanov, H. M. Thomas, and G. E. Morfill, Phys. Rev. Lett. 104, 195001 (2010).
[48] B. Liu, J. Goree, and Y. Feng, Phys. Rev. Lett. 105, 085004 (2010).
[49] P. Bak, C. Tang, and K. Wiesenfeld, Phys. Rev. Lett. 59, 381 (1987).
[50] A. Piel, D. Block, A. Melzer, M. Mulsow, J. Schablinski, A. Schella, F. Wieben, and J. Wilms, Eur. Phys. J. D. 72, 80 (2018)
[51] M. Nambu, S. V. Vladimirov, and P. K. Shukla, Phys.Lett. A 203, 40 (1995)
[52] K. J. Strandburg, Bond-Orientational Order in Condensed Matter Systems (Springer, New York, 1992).
[53] N. E. Huang, Z. Shen, S. R. Long, M. C. Wu, H. H. Shih, Q. Zheng, N. C. Yen, C. C. Tung, and H. H. Liu, Proc. R. Soc. A 454, 903 (1998).
[54] N. E. Huang, M. C. Wu, S. R. Long, S. S. P. Shen, W. Qu, P. Gloersen, and K. L. Fan, Proc. R. Soc. Lond. A 459, 2317 (2003).
[55] N. E. Huang and Z. A. Wu, Rev. Geophys. 46, RG2006 (2008).
[56] J. R. Yeh, J. S. Shieh and N. E. Huang, Adv. Adapt. Data. Anal. 02, 135 (2010)
[57] Y. X. Huang, F. G. Schmitt, Z. M. Lu and Y. L. Liu, Europhys. Lett. 84 (4), 40010, (2008).
[58] S. Perri, V. Carbone, A. Vecchio, R. Bruno, H. Korth, T. H. Zurbuchen, and L. Sorriso-Valvo, Phys. Rev. Lett. 109, 245004 (2012).
[59] J. R. Yeh, J. S. Shieh and N. E. Huang, Adv. Adapt. Data. Anal. 02, 135 (2010)
[60] H. W. Hu, W. Wang and L. I, submitted to Phys. Rev. Lett.
指導教授 伊林(Lin I) 審核日期 2019-7-2
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明