博碩士論文 106328011 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:56 、訪客IP:18.117.75.6
姓名 鄭惟仁(Wei-Jen-Cheng)  查詢紙本館藏   畢業系所 能源工程研究所
論文名稱 以灰色關聯分析探討雙面電化學穿孔之最 佳化參數
(The Investigation of Optimal Parameter in Double sided Electrochemical drilling by Grey Relational Analysis)
相關論文
★ 金屬粉末射出成型毛細吸附脫脂模擬★ 燃料電池複合式流道設計與膜電極組製程
★ 氣態鋅與水蒸氣混合之流場與反應爐參數分析★ 利用化學水浴沉積法製作Ni-ZnO光電極之研究
★ 電解水產氫之電解液流場效應分析★ 以化學水浴法製備AgInS2可見光光電極及其摻雜銅之研究
★ 高溫高壓之電解水產氫效率分析★ 超音波場下電解水產氫之效應分析
★ 以化學水浴法製備氧化鋅光電極薄膜之研究★ 以化學浴沉積法製備四元化合物光電極薄膜之研究
★ 利用化學水浴法鍍製二氧化鈦光電極薄膜之研究★ 以化學浴沉積法製備Cu-In-S化合物光電極薄膜之研究
★ 以化學浴沉積法製備β-In2S3化合物光電極薄膜之研究★ 以化學浴沉積法製備不同結構氧化鋅光電極薄膜之研究
★ 電解水產氫中極化作用之分析與研究★ 磁場對水電解產氫效率增益之機制研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 電化學加工(Electrochemical Machining,ECM),屬於非傳統加工方法的一種,以電解現象達成加工成形之目的,其優點為加工不受材料硬度與強度限制、工件無表面應力殘留,加工速度快且刀具無耗損,具有相當高的發展潛力與附加價值。
本研究目的為採用PCB板,結合刀具及遮罩進行遮罩式電化學雙面加工,用不銹鋼304板(0.5mm)作為工件。以灰色關聯分析探討實驗參數(電解液濃度、操作電壓、遮罩孔洞直徑、電解液流速)對加工品質之影響度,並找出加工範圍內之最佳參數組合,其優點還可以同時進行多重特性評估,有別於田口分析只能望一品質。並分析6×6陣列孔洞其孔洞錐度分布。
實驗結果發現,對於加工成品之特性影響較大的實驗參數為電解液流速與電解液濃度,而實驗之最佳參數組合(A_1 B_3 C_2 D_3)為電解液濃度10wt%、操作電壓22V、遮罩孔徑直徑0.6mm、電解液流速3.74m/s。加工結果如下:平均過切為0.263mm、平均圓度誤差為0.03mm、平均錐度為37.85º與初始條件相比,其灰色關聯度從0.6提升到0.79。孔洞分布中,以橫向排列分布呈現靠近電極端錐度較小、過切量較大,形成波浪狀,得知此區域加工速率較為中間孔洞快速,原因於電極棒兩端放熱及流場邊界層影響,造成兩端電解液溫度較高,電導率上升,加工速率增快。以縱向排列分布時,下游端過切量較大、錐度較小,判斷出下游端加工速率較上游端加工速率快,原因為電解液流動帶離上游的焦耳熱到下游端,與下游流速較慢於上游,造成電解液溫度上升和電導率上升,使加工速率增快。
摘要(英) Electrochemical machining (ECM), which is one of the non-traditional manufacturing processes, shapes workpieces by electrolysis. The advantages of ECM include not being affected by the hardness and strength of the material, no surface residual stress, fast processing speed, and no consumption of the tool. It is considered the enormous potentialities and highly added values.
The purpose of this study is to use a PCB board, combined with a tool and a mask, to process through-mask double-side electrochemical machining. Stainless steel 304 plate (0.5mm) is used as the workpiece. Grey relational analysis(GRA) is used to investigate the effect of experimental parameters, such as electrolyte concentration, applied voltage, diameter of the mask hole, and electrolyte flow rate, on the machining quality, and estimate the best combination of parameters. Compared with Taguchi method, GRA could have multi-objective optimization, while Taguchi has only single-objective optimization. Furtherance analysis of the distribution of taper angle and overcut on 6×6 array holes is also performed.
Through the experimental results, it can be found that the most important factors for the characteristics of finished product are electrolyte flow rate and electrolyte concentration. The best parameter combination is A_1 B_3 C_2 D_3 (electrolyte concentration 10wt%, applied voltage 22V, diameter of the mask hole 0.6mm, and electrolyte flow rate 3.74m/s.) The processing results were as follows: the average overcut was 0.263 mm, the average roundness error was 0.03mm and the average taper angle was 37.85 º. Compared with the original working condition(A_1 B_1 C_1 D_1 ), the GRA is increased from 0.6 to 0.79. In the distribution of the holes, the taper angle distribution in the horizontal arrangement shows that the taper angle is smaller near the electrode rod. In the overcut distribution, the overcut is larger near the electrode end. I will know the machining rate is faster than the part of middle. A wavy distribution on the overcut and taper angle are formed. Because the heat is from both ends of the electrode rods and the boundary layer effect, it cause the electrolyte temperature at both ends to be higher, the conductivity to rise, and the machining rate to increase. When the taper distribution and the overcut distribution are vertical arrangement, the downstream has a large overcut and a small taper. I determine that the downstream machining rate is faster than the upstream. Because the Joule heat accumulate on the downstream by the electrolyte flow from upstream. And the flow rate on the downstream is slower than the upstream. It cause the electrolyte temperature and the conductivity to rise. The machining rate increases.
關鍵字(中) ★ 遮罩式電化學加工 關鍵字(英)
論文目次 摘要.....................................................Ⅰ
Abstract...............................................Ⅲ
目錄...................................................Ⅵ
表目錄..................................................Ⅹ
圖目錄.................................................ⅩⅠ
符號說明...............................................ⅩⅢ
第一章 緒論............................................1
1-1前言............................................1
1-2電化學加工(Electrochemical Machining, ECM).......2
1-3遮罩式電化學.....................................4
1-4文獻回顧.........................................5
1-4-1遮罩式電化學加工之文獻回顧..................5
1-4-2灰色關聯分析之文獻回顧......................7
1-5研究目的.....................................8
第二章 理論基礎.........................................9
2-1電化學加工之基本理論................. ...........9
2-1-1電流效率(Current Efficiency).... .........10
2-1-2極化與電壓........... ....................11
2-1-3歐姆定律(Ohm’s Law)..... ................12
2-1-4液相質傳動力學............... ............13
2-2電流密度、導電度與濃度之關係.....................14
2-2-1電流密度(Current density)................14
2-2-2導電度(Conductivity).....................14
2-3電化學反應式................. .................16
2-4過切、錐度、真圓度......... ....................17
2-4-1過切..................... ...............17
2-4-2錐度................. ...................18
2-4-3真圓度...................................18
2-5灰色關聯分析...................................19
2-5-1數據歸一化............. .................19
2-5-2灰色關聯係數.............. ..............21
2-5-3灰色關聯度...............................21
2-5-4平均灰色關聯度...........................22
第三章 實驗設備與步驟................. .................23
3-1實驗設備....................... ...............23
3-1-1模具結構設計............ ................23
3-1-2直流電源供應器.......... .................24
3-1-3幫浦....................... .............24
3-1-4液體流量計.................. .............25
3-1-5磁石攪拌器...............................25
3-1-6秤重計..................... ............25
3-1-7OVM Lite影像式量測系統..... .............25
3-2實驗材料...................... ...............26
3-2-1電極材料與絕緣遮罩.......... .............26
3-2-2電解液................... ...............27
3-3建構直角表................... ...............27
3-4實驗步驟與注意事項............ ...............28
3-4-1陣列孔洞加工實驗....... ..............28
3-4-2實驗注意事項.............. ..............29
第四章 結果與討論...................... .............31
4-1實驗參數之探討.................... ............31
4-2灰色關聯分析實驗結果........... ............33
4-3利用最佳參數組合實驗之結果......................37
4-4陣列孔洞之分布..................................39
4-4-1橫向排列...............................39
4-4-2縱向排列.............................40
第五章 結論...........................................41
5-1結論.......................................41
5-2未來展望.....................................42
參考文獻..............................................43
附表...................................................48
附圖...................................................55
參考文獻 [1]楊龍傑編著,認識微機電,蒼海書局,台中市,2001年。
[2]徐泰然著,微機電系統與微系統:設計與製造,朱銘祥譯,美商麥格羅‧希爾國際股份有限公司,臺北市,2003年。
[3]S.H. Ahn, S.H. Ryu, D.K. Choi and C.N. Chu, “Electro-chemical micro drilling using ultra short pulses,” Precision Engineering, Vol. 28, No. 2, pp. 129-134, 2004.
[4]木本康雄著,精密加工之電學應用,賴耿陽譯著,復漢出版社,1982年。
[5]佐藤敏一著,金屬腐蝕加工技術,賴耿陽譯著,復漢出版社,台南,1986年。
[6]R.V. Shenoy and M. Datta, “Effect of mask wall angle on shape evolution during through-mask electrochemical micromachining,” Journal of the Electrochemical Society, Vol. 143, No. 2, pp. 544-549, 1996.
[7]D. Zhu, N.S. Qu, H.S. Li, Y.B. Zeng, D.L. Li and S.Q. Qian, “Electrochemical micromachining of microstructures of micro hole and dimple array,” CIRP Annals-Manufacturing Technology, Vol. 58, No. 1, pp. 177-180, 2009.
[8]S.Q. Qian,D. Zhu, N.S. Qu, H.S. Li and D.S. Yan, “Generating micro-dimples array on the hard chrome-coated surface by modified through mask electrochemical micromachining,” The International Journal of Advanced Manufacturing Technology, Vol. 47, No. 9-12, pp. 1121-1127, 2010.
[9]N.S. Qu , X.L. Chen , H.S. Li and Y.B. Zeng, “Electrochemical micromachining of micro-dimple arrays on cylindrical inner surfaces using a dry-film photoresist,” Chinese Journal of Aeronautics, Vol. 27, No. 4, pp. 1030-1036, 2014.
[10]N.S. Qu, X.L. Chen, H.S. Li and D. Zhu, “Fabrication of PDMS micro through-holes for electrochemical micromachining,” The International Journal of Advanced Manufacturing Technology, Vol. 72, No. 1-4, pp. 487-494, 2014.
[11]S.Q. Qian and F. Ji,“Investigation on the aluminum-alloy surface with micro-pits Array generating by through double mask electrochemical machining,” AASRI International Conference on Industrial Electronics and Applications, pp. 59-62, London UK, 2015.
[12] G.Q. Wang H.S. Li N.S. Qu D. Zhu, “Investigation of the hole-formation process during,” Journal of Materials Processing TechnologyVolume 234,August 2016, Pages 95-101
[13]林宏霖,三維熱流場對不同形式電化學微加工之影響(國立中央大學機械工程研究所碩士論文),6月,2018年。
[14]D. Chakradhar and A.V. Gopal, “Multi-objective optimization of electrochemical machining of EN31 steel by grey relational analysis,” International Journal of Modeling and Optimization, Vol. 1, pp. 113-117, 2011.
[15]R. Thanigaivelan and R. Arunachalam, “Optimization of process parameters on machining rate and overcut in electrochemical micromachining using grey relational analysis,” Journal of Science & Industrial Research, Vol. 72, pp. 36-42, 2013.
[16]J. Liu, D. Zhu, L. Zhao and Z. Xu, “Experimental investigation on electrochemical machining of γ-TiAl intermetallic,” 15th Machining Innovations Conference for Aerospace Industry, pp. 20-24, 2015, Hannover, Germany.
[17]J. Jeykrishnan, B.V. Ramnath, C. Elanchezhian, and S. Akilesh, “Parametric analysis on Electro-chemical machining of SKD-12 tool steel,” 5th International Conference of Materials Processing and Characterization, pp. 3760-3766, 2016, Hyderabad, India.
[18]田福助,電化學:原理與應用,高立圖書,新北市,2011年。
[19]胡啟章,電化學原理與方法,五南圖書出版股份有限公司,臺北市,2002年。
[20]Thorpe J.F., R.D. Zerkle, “Theoretical analysis of the equilibrium sinking of shallow, axially symmetric, cavities by electrochemical machining,” Fundamentals of Electrochemical Machining, E lectrochemical Society, Princeton, pp. 1-39, 1971.
[21]溫坤禮、趙忠賢、張宏志、陳曉瑩、溫惠築,灰色理論,五
圖書出版公司,臺北市,2009年。
[22]江金山、吳佩玲、蔣祥第、張廷政、詹福賜,張軒庭、溫坤禮,灰色理論入門,高立圖書有限公司,臺北市,1998年。
[23]E.S. Lee, J.W. Park and Y.H. Moon, “A study on electrochemical micromachining for fabrication of microgrooves in an air-lubricated hydrodynamic bearing,” The International Journal of Advanced Manufacturing Technology, Vol. 20, No. 10, pp. 720-726, 2002.
[24]C. Rosenkranz, M.M. Lohrengel and J.W. Schultze, “The surface structure during pulsed ECM of iron in NaNO3,” Electrochimica Acta, Vol. 50, No. 10, pp. 2009-2016, 2016.
指導教授 洪勵吾 審核日期 2019-7-12
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明