博碩士論文 106328025 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:12 、訪客IP:18.191.27.78
姓名 龔鉉傑(Xuan-Jie Gong)  查詢紙本館藏   畢業系所 能源工程研究所
論文名稱 低碳排智慧建築熱流場模擬分析與 能源使用決策評估
(Analysis of Low-Carbon Smart Green Building CFD Simulation and Evaluation of Energy Efficient Design Strategies)
相關論文
★ 定開孔率下流道設計與疏水流場對質子交換膜燃料電池之性能影響★ 熱風循環烘箱熱傳特性研究
★ 以陽極處理製備奈米結構之氧化鐵光觸媒薄膜應用在光電化學產氫★ 規則多孔碳應用在燃料電池陰極觸媒擔體之研究
★ 鉑錫/多孔碳觸媒應用於燃料電池陰極反應之研究★ 腐蝕特性對金屬多孔材質子交換膜燃料電池性能影響之研究
★ 碎形理論應用在質子交換膜燃料電池中氣體擴散層熱傳導係數之研究★ 中溫固態氧化物燃料電池複合系統分析
★ 中文質子傳輸型固態氧化物燃料電池陽極之研究★ 鋯摻雜鋇鈰釔氧化物微結構與電化學特性之研究
★ 發展應用脈衝雷射沉積製備奈米顆粒堆疊多孔觸媒層與滴塗聚苯並咪唑介面層製作高溫型質子交換膜燃料電池★ 直接甲醇燃料電池氣體擴散層之研究
★ 不同流道設計之透明質子交換膜燃料電池陰極水生成現象探討★ 鋰離子電池陰極材料LiCoO2粉體尺寸與形貌對電池性能的影響
★ 多孔性碳材應用於質子交換膜燃料電池觸媒層之研究★ 多孔材應用於質子交換膜燃料電池散熱之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2027-8-15以後開放)
摘要(中) 建築物提供人類一舒適空間,然而建築部門能源消耗占全球整體能源消耗量約40%,因此如何有效減低建築能耗是必須深入探討之問題。本研究以中央大學內一示範場域之低碳排智慧建築為研究對象,藉由當地氣候條件和微氣象站之資料,配合CFD流場模擬分析,將流場空間切分為室外與室內空間,並了解不同季節之室外流場常態分佈,研究發現目標建築物於冬、夏季皆以東北面為迎風向,故以此結果作為室內流場之邊界參考,經由驗證後室內流場模擬結果與量測值相對誤差小於3%,表示研究結果成功鏈結室內外流場之關係。接著,經由室內流場之模擬分析,探討不同使用情境下,自然通風和空調模式下之室內溫度、風速場分佈以及室內品質,探討合適開窗策略以及空調機應擺放之位置。以法定二氧化碳濃度要求(<1000 ppm)和室內人體舒適度,尋找合適之室內配置策略,以及良好室內舒適環境。同時,配合流場分析考慮不同使用情境,依人數設計長照情境與辦公室情境,根據當地氣候條件、現有建築設施及空調系統等等,估算建築全年能耗,可視化建築能源消耗量,用以評估研究目標之建築能源使用決策。研究發現使用者習慣、建築外殼特性與通風量同時為影響流場與能耗之主要因素。
摘要(英) Low carbon and clean green energy house is a comfortable and economic place for the people to stay. The green energy house consumes only 40% of the energy compared to the conventional house. This low carbon emission house coupled with Internet of Things (IoT) was demonstrated at National Central University. Every possible factor effects in the functioning and maintenance of the energy house was considered in the simulations. The Computational Fluid Dynamic (CFD) simulations were performed in flow field mode. The local climatic conditions and the data of the micro weather station was considered for the outdoor flow field simulations. The indoor flow field simulation explores the indoor temperature, wind distribution, ventilation and air conditioning mode under different usage conditions in different climatic seasons. We simulated the effect of heat distribution in the house and placed the air conditioners for comfortable living environment. We also demonstrated the usage for both office and residential purposes and calculated the energy consumption based upon the local climatic conditions with effective usage of all the facilities available in the house. This study combines CFD and energy consumption estimation to provide comfortable living in the house with good air quality in different seasons. The user models, effective power consumption and other factors demonstrated and simulated in our research helps the future researchers in designing of power generation and storage for living in various situations.
關鍵字(中) ★ 流場模擬
★ 室內空氣品質
★ 人體舒適度
★ 建築能耗
關鍵字(英) ★ CFD
★ Fluent
★ eQUEST
★ Building consumption
論文目次 摘要 i
Abstract ii
誌謝 iii
目錄 v
圖目錄 x
表目錄 xiv
符號表 xvii
第一章 緒論 1
1.1 研究背景 1
1.2 研究動機與目的 3
1.2.1 研究動機 3
1.2.2 研究目的 4
1.3 研究方法 5
1.3.1 研究對象 8
1.3.2 研究範圍 8
1.4 研究限制 9
第二章 文獻回顧 11
2.1 流場模擬分析 11
2.2 紊流模型 12
2.3 舒適性 15
2.3.1舒適環境要素 15
2.3.2 PMV/PPD模型 18
2.3.3生理等效溫度PET 21
2.3.4通用熱氣候指數UTCI 23
2.4 建築能耗分析 25
2.4.1建築能耗因素 25
2.4.3建築能耗分析軟體 26
第三章 理論與數值模式 29
3.1 基本假設 29
3.2 統御方程 29
3.3 植栽源項方程 33
3.4 大氣邊界層方程式 39
3.5 壁函數 43
3.6 壁面熱傳遞 45
3.7 輻射模型 48
3.8 數值方法 50
3.8.1 計算軟體描述 50
3.8.2 數值演算法 51
3.8.3 收斂條件設定 52
3.8.4 鬆弛因數與離散方式 53
第四章 幾何模型與邊界設定 55
4.1 模擬環境介紹 55
4.2 地區平均氣候 56
4.2.1 台灣氣候資料 56
4.2.2 計算域氣象資料 62
4.3 幾何模型 65
4.3.1 室外空間計算域 66
4.3.2 室內空間計算域 68
4.4 邊界條件 70
4.4.1 室外空間模擬設置 70
4.4.2 室內空間模擬設置 72
4.5 情境設計與參數設置 74
4.5.1 室內源項設定 74
4.5.2 建築材質設置 76
4.5.3太陽輻射相關係數設置 79
4.6 網格獨立性測試 81
4.6.1 室外空間網格獨立性測試 81
4.6.2 室內空間網格獨立性測試 81
第五章 結果與討論 83
5.1 CFD模擬與量測值驗證 83
5.1.1 室外流場模擬驗證 83
5.1.2 室內流場模擬驗證 86
5.2 室外流場模擬分析 87
5.3 室內流場模擬分析 91
5.3.1 室內敏感性分析 91
5.3.2 通風模式 93
5.3.3 空調模式 112
5.4 舒適性分析 123
5.5 建築能耗分析 125
5.5.1空調系統 125
5.5.2照明系統 127
5.5.3 人員活動 128
5.5.4能耗計算結果 133
第六章 結論與未來方向 140
6.1 結論 140
6.2 未來方向 141
參考文獻 143
附錄A、有效Prandtl數之倒數 149
附錄B、增加修正黏滯度之條件參數Rɛ 150
附錄C、有限體積法與SIMPLEC演算法 151
附錄D、邊界條件之離散 158
附錄E、建築結構層之材料特性 159
附錄F、網格品質建議值 160
參考文獻 [1] AR4 Climate Change 2007: Synthesis Report, adopted section by section at IPCC Plenary XXVII (Valencia, Spain, 12-17 November), 2007.
[2] Z. J. Zhai and J. M. Helman, “Implications of climate changes to building energy and design”, Sustainable Cities and Society, vol. 44, pp. 511-9, 2019.
[3] M. Levine, D. Ürge-Vorsatz, K. Blok, L. Geng, D. Harvey, S. Lang, G. Levermore, A. M. Mehlwana, S. Mirasgedis, A. Novikova, J. Rilling, and H. Yoshino, “Residential and commercial buildings”, Cambridge University Press, NY, USA, 2007.
[4] K.J. Chua, S.K. Chou, W.M. Yang, and J. Yan, “Achieving better energy-efficient air conditioning – A review of technologies and strategies”, Applied Energy, vol. 104, pp. 87-104, 2013.
[5] G. Lowry, “Energy saving claims for lighting controls in commercial buildings”, Energy and Buildings, vol. 133, pp. 489-97, 2016.
[6] 廖慧燕,「建築物耗能評估軟體驗證之研究–既有建築節能改善之效益評估」,內政部建築研究所協同研究報告,2012。
[7] A. Pedrini, F. S. Westphal, and R. Lamberts, “A methodology for building energy modeling and calibration in warm climates”, Building and Environment, vol. 37, pp. 903-12, 2002.
[8] M. Mottahedia, A. Mohammadpour, S. S. Amiri, D. Riley, and S. Asadi, “Multilinear regression models to predict the annual energy consumption of an office building with different shapes”, Procedia Engineering, vol. 118, pp. 622-9. 2015.
[9] REN21, Renewables 2016 global Status Report, 2016.
[10] C. G. Popovici, “HVAC system functionality simulation using ANSYS-Fluent”, Energy Procedia, vol. 112, pp. 360-5, 2017.
[11] I. F. S. A. Kabir, S. Kanagalingam, and F. Safiyullah, “Performance evaluation of air flow and thermal comfort in the room with wind-catcher using different CFD techniques under neutral atmospheric boundary layer”, Energy Procedia, vol. 143, pp. 199-203, 2017.
[12] J. H. Moon, J. W. Lee, C. H. Jeong, and S. H. Lee, “Thermal comfort analysis in a passenger compartment considering the solar radiation effect”, International Journal of Thermal Sciences, vol. 107, pp. 77-88, 2016.
[13] N. Nishimura, T. Nomura, H. Iyota, and S. Kimoto, “Novel water facilities for creation of comfortable urban micrometeorology”, Solar Energy, vol. 64, pp. 197–207, 1998.
[14] C. Pfeiler and H. Raupenstrauch, “Application of different turbulence models to study the effect of local anisotropy for a non-premixed piloted methane flame”, Computer Aided Chemical Engineering, vol. 28, pp. 49-54, 2010.
[15] FLUENT 6.3 User′s Guide, Fluent Inc., 2006.
[16] ISO, ISO standard 7730, “Ergonomics of the thermal environment - Analytical determination and interpretation of thermal comfort using calculation of the PMV and PPD indices and local thermal comfort criteria”, International Standards Organization”, 2005.
[17] P. O. Fanger, “Thermal comfort: analysis and applications in environmental engineering”, McGraw-Hill, New York, 1970.
[18] ASHRAE, ANSI/ASHRAE Standard 55-2004, “Thermal environmental conditions for human occupancy”, Atlanta, American Society of Heating, Refrigerating and Air-Conditioning Engineers, 2004.
[19] M. Bayoumi, “Energy saving method for improving thermal comfort and air quality in warm humid climates using isothermal high Veocity ventilation”, Renewable Energy, vol. 144, pp. 502-12, 2017.
[20] S. Schiavon and A. K. Melikov, “Energy saving and improved comfort by increased air movement”, Energy and Buildings, vol. 40, pp. 1954-60, 2008.
[21] J. Khedari, N. Yamtraipat, N. Pratintong, and J. Hirunlabh, "Thailand ventilation comfort chart", Building and Environment, pp. 245-9, 2000.
[22] Y. C. Zhai, Y. F. Zhang, H. Zhang, W. Pasut, E. Arens, and Q. L. Meng, “Human comfort and perceived air quality in warm and humid environments with ceiling fans”, Building and Environment, vol. 90, pp. 178-85, 2015.
[23] Z. Wu, N. Li, P. Wargocki, J. Peng, J. Li, and H. Cui, “Adaptive thermal comfort in naturally ventilated dormitory buildings in Changsha, China”, Energy and Buildings, vol. 186, pp. 56-70, 2019.
[24] M. H. Hasan, F. Alsaleem, and M. Rafaie, “Sensitivity study for the PMV thermal comfort model and the use of wearable devices biometric data for metabolic rate estimation”, Building and Environment, vol. 110, pp. 173-83, 2016.
[25] Z. shuai, H. Weiping, C. Dengkai, C. jianjie, F. Hao, and D. Xiaosai, “Thermal comfort analysis based on PMV/PPD in cabins of manned submersibles”, Building and Environment, vol. 148, pp. 668-76, 2019.
[26] H. Mayer and P. Hoppe, “Thermal comfort of man in different urban environments”, Theor. Appl. Climatol, vol. 38, pp. 43-9, 1987.
[27] A. Matzarakis and B. Amelung, “Physiological equivalent temperature as indicator for impacts of climate change on thermal comfort of humans”, In Seasonal forecasts, climatic change and human health, Springer Netherlands, pp. 161-72, 2008.
[28] A. Matzarakis, F. Rutz, and H. Mayer, “Modelling Radiation fluxes in simple and complex environments – Application of the RayMan model”, International Journal of Biometeorology, vol. 51, pp. 323-34, 2007.
[29] A. Matzarakis, F. Rutz, and H. Mayer, “Modelling Radiation fluxes in simple and complex environments – Basics of the RayMan model”, International Journal of Biometeorology, vol. 54, pp. 131-9, 2010.
[30] R. L. Hwang, T. P. Lin, H. H. Liang, K. H. Yang, and T. C. Yeh, “Additive model for thermal comfort generated by matrix experiment using orthogonal array”, Building and Environment, vol. 44, pp. 1730-9, 2009.
[31] S. Schiavon, T. Hoyt, and A. Piccioli, “Web application for thermal comfort visualization and calculation according to ASHRAE Standard 55”, Building Simulation, vol. 7, pp. 321-34, 2013.
[32] T. Hoyt, K. H. Lee, H. Zhang, E. Arens, and T. Webster, “Energy savings from extended air temperature setpoints and reductions in room air mixing”, Proceedings, International Conference on Environmental Ergonomics, 2009.
[33] J. Kim, S. Schiavon, and G. Brager, “Personal comfort models – A new paradigm in thermal comfort for occupant-centric environmental control”, Building and Environment, vol. 132, pp.114-24, 2018.
[34] Z. Wang, R. de Dear, M. Luo, B. Lin, Y. He, A. Ghahramani, and Y. Zhu, “Individual difference in thermal comfort: A literature review”, Building and Environment, vol.138, pp. 181-93, 2018.
[35] D. Li, C. C. Menassa, and V. R. Kamat, “Personalized human comfort in indoor building environments under diverse conditioning modes”, Building and Environment, vol. 126, pp. 304-17, 2017.
[36] Y. Iwafune, Y. Mori, T. Kawai, and Y. Yagita, “Energy-saving effect of automatic home energy report utilizing home energy management system data in Japan”, Energy, vol. 125, pp. 382-92, 2017.
[37] H. S. Suh and D. D. Kim, “Energy performance assessment towards nearly zero energy community buildings in South Korea”, Sustainable Cities and Society, vol. 44, pp. 488-4, 2019.
[38] S. Ferrari and M. Beccali, “Energy-environmental and cost assessment of a set of strategies for retrofitting a public building toward nearly zero-energy building target”, Sustainable Cities and Society, 2017.
[39] Simulation Research Group, Lawrence Berkley National Lab, Overview of DOE 2.2, http://ww.doe2.com/
[40] James J. Hirsch & Associates, Introductory Tutorial of eQUEST, version 3.64, 2010.
[41] Y. C. Wang and H. T. Lin, “Energy-saving techniques of full-scale green building analysis research – Taiwan’s first zero-carbon green building”, Applied Mechanics and Materials, vol. 121-6, pp. 3058-66, 2012.
[42] J. S. Tang and L. J. Leu, “A study of coupled building energy and CFD simulations”, Proceedings of the 22nd KKCNN Symposium on Civil Engineering, Chiang Mai, Thailand, 2009.
[43] Y. Zhu, “Applying computer-based simulation to energy auditing: A case study”, Energy and Buildings, vol. 38, pp. 421-8, 2006.
[44] Y. Pan, Z. Huang, G. Wu, and C. Chen, “The application of building energy simulation and calibration in two high-rise commercial building in Shanghai”, Second National IBPSA-USA Conference, Cambridge, MA, 2006.
[45] M. Bojic and F. Yika, “Cooling energy evaluation for high-rise residential buildings in Hong Kong,” Energy and Buildings, vol. 37, pp. 345-51, 2005.
[46] S. A. Orszag, V. Yakhot, W. S. Flannery, F. Boysan, D. Choudhury, J. Maruzewski, and B. Patel, “Renormalization Group Modeling and Turbulence Simulations”, In International Conference on Near-Wall Turbulent Flows, Tempe, Arizona. 1993.
[47] R. Buccolieri, J. L. Santiago, E. Rivas, and B. Sáanchez, “Reprint of: Review on urban tree modelling in CFD simulations: Aerodynamic, deposition and thermal effects”, Urban Forestry & Urban Greening, vol. 37, pp. 56-64, 2019.
[48] M. Robitu, M. Musy, C. Inard, and D. Groleau, “Modeling the influence of vegetation and water pond on urban microclimate”, Solar Energy, vol. 80, pp. 435-47, 2006.
[49] J. Liu, J. M. Chen, T. A. Black, and M. D. Novak, “E-ε modelling of turbulent air flow downwind of a model forest edge”, Boundary-Layer Meteorology, vol. 77, pp. 21-44, 1996.
[50] S. Coccolo, D. Pearlmutter, J. Kaempf, and J. L. Scartezzini, “Thermal Comfort Maps to estimate the impact of urban greening on the outdoor human comfort”, Urban Forestry and amp, Urban Greening, 2018.
[51] M. Bruse and H. Fleer, “Simulating surface–plant–air interactions inside urban environments with a three dimensional numerical model”, Environmental Modelling & Software, vol. 13, pp. 373-84, 1998.
[52] M. H. Kobayashi, J. C. F. Pereira, and M. B. B. Siqueira, “Numerical study of the turbulent flow over and in a model forest on a 2D hill”, Journal of Wind Engineering and Industrial Aerodynamics, vol. 53, pp. 357-74, 1994.
[53] G. S. Campbell, “An Introduction to environmental biophysics”, Springer, New York, CFD2000 manual, Computational fluid dynamics systems, Pacific Sierra Research Corporation, pp.159, 1977.
[54] T. R. Oke, “Boundary Layer Climates”, New York: Methuen, 1987.
[55] B. Blocken, T. Stathopoulos, and J. Carmeliet, “CFD simulation of the atmospheric boundary layer: wall function problems”, Atmospheric Environment, vol. 41, pp. 238-52, 2007.
[56] B. Sidawi and N. Hamza, “CFD modeling as a tool for assessing outdoor thermal comfort conditions in urban settings in hot arid climates”, ITcon, vol. 19, pp. 248-69, 2014.
[57] J. Bouyer, C. Inard, and M. Musy, “Microclimatic coupling as a solution to improve building energy simulation in an urban context”, Energy and Buildings, vol. 43, pp. 1549-59, 2011.
[58] P. J. Richards, “Computational modelling of wind flows around low rise buildings using PHOENIX”, Report for the ARFC Institute of Engineering Research Wrest Park, Silsoe Research Institute, UK: Bedfordshire, 1989.
[59] R. I. Harris and D. M. Deaves, “The structure of strong winds”, CIRA Conference on Wind Engineering in the Eighties, London, Construction Industry Research and Information Association, pp. 4, 1981.
[60] P. J. Richards and R. P. Hoxey, “Appropriate boundary conditions for computational wind engineering models using the k-ϵ turbulence model”, Journal of Wind Engineering and Industrial Aerodynamics, vol. 46-7, pp. 145-53, 1993.
[61] T. Cebeci and P. Bradshaw, “Momentum Transfer in Boundary Layers”, Hemisphere Publishing Corporation, New York, 1977.
[62] J. Wieringa, “Updating the davenport roughness classification”, Journal of Wind Engineering and Industrial Aerodynamics, vol. 41-4, pp. 357-68, 1992.
[63] W. Jürges, “The heat transfer at a flat wall (Der Wärmeübergang an einer ebenen Wand)”, Beihefte zum Gesundh-Ing, vol. 1, pp. 19, 1924.
[64] J. P. Vandoormaal and G. D. Raithby, “Enhancements of the SIMPLE method for predicting incompressible fluid flows” Numerical Heat Transfer, vol. 7, pp. 147-63, 1984.
[65] B. Blocken, “Computational Fluid Dynamics for urban physics: Importance, scales, possibilities, limitations and ten tips and tricks towards accurate and reliable simulations”, Building and Environment, pp. 1-27, 2015.
[66] 中華民國衛生福利部統計處,老人狀況調查報告,2005。
[67] M. T. Kea, C. H. Yeh, and J. T. Jian, “Analysis of building energy consumption parameters and energy savings measurement and verification by applying eQUEST software”, Energy and Buildings, vol 61, pp. 100-7, 2013.
[68] 何明錦、林憲德,隔熱材料對建築外殼隔熱性能及節能效益影響之研究,內政部建築研究所,2011。
[69] 吳永豪,智慧窗與玻璃塗層,工研院材料所自動化檢測實驗室,工業材料雜誌,2004。
[70] W. Feng, L Zou, G. Gao, G. Wu, J. Shen, and W. Li, “Gasochromic smart window: optical and thermal properties, energy simulation and feasibility analysis”, Solar Energy Materials and Solar Cells, vol. 144, pp. 316-23, 2016.
[71] 2009 ASHRAE Handbook: Fundamentals-IP Edition. Atlanta: American Society of Heating, Refrigerating and Air-Conditioning Engineers, 2009.
[72] A. K. Betts and J. H. Ball, “Albedo over the boreal forest”, Journal of Geophysical Research, vol. 102, pp. 28-909, 1997.
[73] W. G. Rees, “Physical principles of remote sensing”, Cambridge, England: Cambridge University Press, pp. 46, 1990.
[74] R. C. Weast, (Ed.). Handbook of Chemistry and Physics, 61st ed. Boca Raton, FL: CRC Press, pp. 398, 1981.
[75] 郭建源,都市區域風環境影響評估分析研究,內政部建築研究所自行研究報告,2015。
[76] 方富民,大型建築物自然通風之分析研究,內政部建築研究所委託研究報告,社團法人中華民國風工程學會,2014。
[77] B. Wu, W. Cai, H. Chen, and K. Ji, “Experimental investigation on airflow pattern for active chilled beam system”, Energy and Buildings, vol. 166, pp 438-49, 2018.
[78] 林憲德,綠色建築,詹氏書局,臺北市,2006。
[79] 何明錦,戶外遮蔽因子對微氣候影響之實測與解析,內政部建築研究所協同研究報告,2011。
[80] 范家魁,擁擠空間之空氣品質計算,國立交通大學機械工程學系碩士論文,2013年。
[81] Y. Wang, H. Lina, W. Wang, Y. Liu, R. Wennersten, and Q. Sun, “Impacts of climate change on the cooling loads of residential buildings differences between occupants with different age”, 9th International Conference on Applied Energy, 2017.
[82] A. Atef, Z. Noureddine, F. Soufiane, “SPUCAL_mrt as a new model for estimating the mean radiant temperature in arid lands”, Energy Procedia, vol. 74, pp. 273-80, 2015.
[83] H. Li, “Evaluation of cool pavement strategies for heat island mitigation”, Institute of Transportation Studies, University of California, pp. 294, 2012.
[84] K. Parsons, “Heat stress standard ISO 7243 and its global application”, Industrial Health, vol. 44, pp. 368-79, 2006.
[85] C. L. Tan, N. H. Wong, and S. K. Jusuf, “Outdoor mean radiant temperature estimation in the tropical urban environment”, Building and Environment, vol. 64, pp. 118-29, 2013.
[86] L. Guo and R. G. Maghirang, “Numerical simulation of airflow and particle collection by vegetative barriers”, Engineering Applications of Computational Fluid Mechanics, vol. 6, pp. 110-22, 2012.
[87] J. Dauzat, B. Rapidel, and A. Berger, “Simulation of leaf transpiration and sap flow in virtual plants: model description and application to a coffee plantation in Costa Rica”, Agricultural and Forest Meteorology, vol. 109, pp. 143-60, 2001.
指導教授 曾重仁(Chung-Jen Tseng) 審核日期 2019-8-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明