參考文獻 |
[1] AR4 Climate Change 2007: Synthesis Report, adopted section by section at IPCC Plenary XXVII (Valencia, Spain, 12-17 November), 2007.
[2] Z. J. Zhai and J. M. Helman, “Implications of climate changes to building energy and design”, Sustainable Cities and Society, vol. 44, pp. 511-9, 2019.
[3] M. Levine, D. Ürge-Vorsatz, K. Blok, L. Geng, D. Harvey, S. Lang, G. Levermore, A. M. Mehlwana, S. Mirasgedis, A. Novikova, J. Rilling, and H. Yoshino, “Residential and commercial buildings”, Cambridge University Press, NY, USA, 2007.
[4] K.J. Chua, S.K. Chou, W.M. Yang, and J. Yan, “Achieving better energy-efficient air conditioning – A review of technologies and strategies”, Applied Energy, vol. 104, pp. 87-104, 2013.
[5] G. Lowry, “Energy saving claims for lighting controls in commercial buildings”, Energy and Buildings, vol. 133, pp. 489-97, 2016.
[6] 廖慧燕,「建築物耗能評估軟體驗證之研究–既有建築節能改善之效益評估」,內政部建築研究所協同研究報告,2012。
[7] A. Pedrini, F. S. Westphal, and R. Lamberts, “A methodology for building energy modeling and calibration in warm climates”, Building and Environment, vol. 37, pp. 903-12, 2002.
[8] M. Mottahedia, A. Mohammadpour, S. S. Amiri, D. Riley, and S. Asadi, “Multilinear regression models to predict the annual energy consumption of an office building with different shapes”, Procedia Engineering, vol. 118, pp. 622-9. 2015.
[9] REN21, Renewables 2016 global Status Report, 2016.
[10] C. G. Popovici, “HVAC system functionality simulation using ANSYS-Fluent”, Energy Procedia, vol. 112, pp. 360-5, 2017.
[11] I. F. S. A. Kabir, S. Kanagalingam, and F. Safiyullah, “Performance evaluation of air flow and thermal comfort in the room with wind-catcher using different CFD techniques under neutral atmospheric boundary layer”, Energy Procedia, vol. 143, pp. 199-203, 2017.
[12] J. H. Moon, J. W. Lee, C. H. Jeong, and S. H. Lee, “Thermal comfort analysis in a passenger compartment considering the solar radiation effect”, International Journal of Thermal Sciences, vol. 107, pp. 77-88, 2016.
[13] N. Nishimura, T. Nomura, H. Iyota, and S. Kimoto, “Novel water facilities for creation of comfortable urban micrometeorology”, Solar Energy, vol. 64, pp. 197–207, 1998.
[14] C. Pfeiler and H. Raupenstrauch, “Application of different turbulence models to study the effect of local anisotropy for a non-premixed piloted methane flame”, Computer Aided Chemical Engineering, vol. 28, pp. 49-54, 2010.
[15] FLUENT 6.3 User′s Guide, Fluent Inc., 2006.
[16] ISO, ISO standard 7730, “Ergonomics of the thermal environment - Analytical determination and interpretation of thermal comfort using calculation of the PMV and PPD indices and local thermal comfort criteria”, International Standards Organization”, 2005.
[17] P. O. Fanger, “Thermal comfort: analysis and applications in environmental engineering”, McGraw-Hill, New York, 1970.
[18] ASHRAE, ANSI/ASHRAE Standard 55-2004, “Thermal environmental conditions for human occupancy”, Atlanta, American Society of Heating, Refrigerating and Air-Conditioning Engineers, 2004.
[19] M. Bayoumi, “Energy saving method for improving thermal comfort and air quality in warm humid climates using isothermal high Veocity ventilation”, Renewable Energy, vol. 144, pp. 502-12, 2017.
[20] S. Schiavon and A. K. Melikov, “Energy saving and improved comfort by increased air movement”, Energy and Buildings, vol. 40, pp. 1954-60, 2008.
[21] J. Khedari, N. Yamtraipat, N. Pratintong, and J. Hirunlabh, "Thailand ventilation comfort chart", Building and Environment, pp. 245-9, 2000.
[22] Y. C. Zhai, Y. F. Zhang, H. Zhang, W. Pasut, E. Arens, and Q. L. Meng, “Human comfort and perceived air quality in warm and humid environments with ceiling fans”, Building and Environment, vol. 90, pp. 178-85, 2015.
[23] Z. Wu, N. Li, P. Wargocki, J. Peng, J. Li, and H. Cui, “Adaptive thermal comfort in naturally ventilated dormitory buildings in Changsha, China”, Energy and Buildings, vol. 186, pp. 56-70, 2019.
[24] M. H. Hasan, F. Alsaleem, and M. Rafaie, “Sensitivity study for the PMV thermal comfort model and the use of wearable devices biometric data for metabolic rate estimation”, Building and Environment, vol. 110, pp. 173-83, 2016.
[25] Z. shuai, H. Weiping, C. Dengkai, C. jianjie, F. Hao, and D. Xiaosai, “Thermal comfort analysis based on PMV/PPD in cabins of manned submersibles”, Building and Environment, vol. 148, pp. 668-76, 2019.
[26] H. Mayer and P. Hoppe, “Thermal comfort of man in different urban environments”, Theor. Appl. Climatol, vol. 38, pp. 43-9, 1987.
[27] A. Matzarakis and B. Amelung, “Physiological equivalent temperature as indicator for impacts of climate change on thermal comfort of humans”, In Seasonal forecasts, climatic change and human health, Springer Netherlands, pp. 161-72, 2008.
[28] A. Matzarakis, F. Rutz, and H. Mayer, “Modelling Radiation fluxes in simple and complex environments – Application of the RayMan model”, International Journal of Biometeorology, vol. 51, pp. 323-34, 2007.
[29] A. Matzarakis, F. Rutz, and H. Mayer, “Modelling Radiation fluxes in simple and complex environments – Basics of the RayMan model”, International Journal of Biometeorology, vol. 54, pp. 131-9, 2010.
[30] R. L. Hwang, T. P. Lin, H. H. Liang, K. H. Yang, and T. C. Yeh, “Additive model for thermal comfort generated by matrix experiment using orthogonal array”, Building and Environment, vol. 44, pp. 1730-9, 2009.
[31] S. Schiavon, T. Hoyt, and A. Piccioli, “Web application for thermal comfort visualization and calculation according to ASHRAE Standard 55”, Building Simulation, vol. 7, pp. 321-34, 2013.
[32] T. Hoyt, K. H. Lee, H. Zhang, E. Arens, and T. Webster, “Energy savings from extended air temperature setpoints and reductions in room air mixing”, Proceedings, International Conference on Environmental Ergonomics, 2009.
[33] J. Kim, S. Schiavon, and G. Brager, “Personal comfort models – A new paradigm in thermal comfort for occupant-centric environmental control”, Building and Environment, vol. 132, pp.114-24, 2018.
[34] Z. Wang, R. de Dear, M. Luo, B. Lin, Y. He, A. Ghahramani, and Y. Zhu, “Individual difference in thermal comfort: A literature review”, Building and Environment, vol.138, pp. 181-93, 2018.
[35] D. Li, C. C. Menassa, and V. R. Kamat, “Personalized human comfort in indoor building environments under diverse conditioning modes”, Building and Environment, vol. 126, pp. 304-17, 2017.
[36] Y. Iwafune, Y. Mori, T. Kawai, and Y. Yagita, “Energy-saving effect of automatic home energy report utilizing home energy management system data in Japan”, Energy, vol. 125, pp. 382-92, 2017.
[37] H. S. Suh and D. D. Kim, “Energy performance assessment towards nearly zero energy community buildings in South Korea”, Sustainable Cities and Society, vol. 44, pp. 488-4, 2019.
[38] S. Ferrari and M. Beccali, “Energy-environmental and cost assessment of a set of strategies for retrofitting a public building toward nearly zero-energy building target”, Sustainable Cities and Society, 2017.
[39] Simulation Research Group, Lawrence Berkley National Lab, Overview of DOE 2.2, http://ww.doe2.com/
[40] James J. Hirsch & Associates, Introductory Tutorial of eQUEST, version 3.64, 2010.
[41] Y. C. Wang and H. T. Lin, “Energy-saving techniques of full-scale green building analysis research – Taiwan’s first zero-carbon green building”, Applied Mechanics and Materials, vol. 121-6, pp. 3058-66, 2012.
[42] J. S. Tang and L. J. Leu, “A study of coupled building energy and CFD simulations”, Proceedings of the 22nd KKCNN Symposium on Civil Engineering, Chiang Mai, Thailand, 2009.
[43] Y. Zhu, “Applying computer-based simulation to energy auditing: A case study”, Energy and Buildings, vol. 38, pp. 421-8, 2006.
[44] Y. Pan, Z. Huang, G. Wu, and C. Chen, “The application of building energy simulation and calibration in two high-rise commercial building in Shanghai”, Second National IBPSA-USA Conference, Cambridge, MA, 2006.
[45] M. Bojic and F. Yika, “Cooling energy evaluation for high-rise residential buildings in Hong Kong,” Energy and Buildings, vol. 37, pp. 345-51, 2005.
[46] S. A. Orszag, V. Yakhot, W. S. Flannery, F. Boysan, D. Choudhury, J. Maruzewski, and B. Patel, “Renormalization Group Modeling and Turbulence Simulations”, In International Conference on Near-Wall Turbulent Flows, Tempe, Arizona. 1993.
[47] R. Buccolieri, J. L. Santiago, E. Rivas, and B. Sáanchez, “Reprint of: Review on urban tree modelling in CFD simulations: Aerodynamic, deposition and thermal effects”, Urban Forestry & Urban Greening, vol. 37, pp. 56-64, 2019.
[48] M. Robitu, M. Musy, C. Inard, and D. Groleau, “Modeling the influence of vegetation and water pond on urban microclimate”, Solar Energy, vol. 80, pp. 435-47, 2006.
[49] J. Liu, J. M. Chen, T. A. Black, and M. D. Novak, “E-ε modelling of turbulent air flow downwind of a model forest edge”, Boundary-Layer Meteorology, vol. 77, pp. 21-44, 1996.
[50] S. Coccolo, D. Pearlmutter, J. Kaempf, and J. L. Scartezzini, “Thermal Comfort Maps to estimate the impact of urban greening on the outdoor human comfort”, Urban Forestry and amp, Urban Greening, 2018.
[51] M. Bruse and H. Fleer, “Simulating surface–plant–air interactions inside urban environments with a three dimensional numerical model”, Environmental Modelling & Software, vol. 13, pp. 373-84, 1998.
[52] M. H. Kobayashi, J. C. F. Pereira, and M. B. B. Siqueira, “Numerical study of the turbulent flow over and in a model forest on a 2D hill”, Journal of Wind Engineering and Industrial Aerodynamics, vol. 53, pp. 357-74, 1994.
[53] G. S. Campbell, “An Introduction to environmental biophysics”, Springer, New York, CFD2000 manual, Computational fluid dynamics systems, Pacific Sierra Research Corporation, pp.159, 1977.
[54] T. R. Oke, “Boundary Layer Climates”, New York: Methuen, 1987.
[55] B. Blocken, T. Stathopoulos, and J. Carmeliet, “CFD simulation of the atmospheric boundary layer: wall function problems”, Atmospheric Environment, vol. 41, pp. 238-52, 2007.
[56] B. Sidawi and N. Hamza, “CFD modeling as a tool for assessing outdoor thermal comfort conditions in urban settings in hot arid climates”, ITcon, vol. 19, pp. 248-69, 2014.
[57] J. Bouyer, C. Inard, and M. Musy, “Microclimatic coupling as a solution to improve building energy simulation in an urban context”, Energy and Buildings, vol. 43, pp. 1549-59, 2011.
[58] P. J. Richards, “Computational modelling of wind flows around low rise buildings using PHOENIX”, Report for the ARFC Institute of Engineering Research Wrest Park, Silsoe Research Institute, UK: Bedfordshire, 1989.
[59] R. I. Harris and D. M. Deaves, “The structure of strong winds”, CIRA Conference on Wind Engineering in the Eighties, London, Construction Industry Research and Information Association, pp. 4, 1981.
[60] P. J. Richards and R. P. Hoxey, “Appropriate boundary conditions for computational wind engineering models using the k-ϵ turbulence model”, Journal of Wind Engineering and Industrial Aerodynamics, vol. 46-7, pp. 145-53, 1993.
[61] T. Cebeci and P. Bradshaw, “Momentum Transfer in Boundary Layers”, Hemisphere Publishing Corporation, New York, 1977.
[62] J. Wieringa, “Updating the davenport roughness classification”, Journal of Wind Engineering and Industrial Aerodynamics, vol. 41-4, pp. 357-68, 1992.
[63] W. Jürges, “The heat transfer at a flat wall (Der Wärmeübergang an einer ebenen Wand)”, Beihefte zum Gesundh-Ing, vol. 1, pp. 19, 1924.
[64] J. P. Vandoormaal and G. D. Raithby, “Enhancements of the SIMPLE method for predicting incompressible fluid flows” Numerical Heat Transfer, vol. 7, pp. 147-63, 1984.
[65] B. Blocken, “Computational Fluid Dynamics for urban physics: Importance, scales, possibilities, limitations and ten tips and tricks towards accurate and reliable simulations”, Building and Environment, pp. 1-27, 2015.
[66] 中華民國衛生福利部統計處,老人狀況調查報告,2005。
[67] M. T. Kea, C. H. Yeh, and J. T. Jian, “Analysis of building energy consumption parameters and energy savings measurement and verification by applying eQUEST software”, Energy and Buildings, vol 61, pp. 100-7, 2013.
[68] 何明錦、林憲德,隔熱材料對建築外殼隔熱性能及節能效益影響之研究,內政部建築研究所,2011。
[69] 吳永豪,智慧窗與玻璃塗層,工研院材料所自動化檢測實驗室,工業材料雜誌,2004。
[70] W. Feng, L Zou, G. Gao, G. Wu, J. Shen, and W. Li, “Gasochromic smart window: optical and thermal properties, energy simulation and feasibility analysis”, Solar Energy Materials and Solar Cells, vol. 144, pp. 316-23, 2016.
[71] 2009 ASHRAE Handbook: Fundamentals-IP Edition. Atlanta: American Society of Heating, Refrigerating and Air-Conditioning Engineers, 2009.
[72] A. K. Betts and J. H. Ball, “Albedo over the boreal forest”, Journal of Geophysical Research, vol. 102, pp. 28-909, 1997.
[73] W. G. Rees, “Physical principles of remote sensing”, Cambridge, England: Cambridge University Press, pp. 46, 1990.
[74] R. C. Weast, (Ed.). Handbook of Chemistry and Physics, 61st ed. Boca Raton, FL: CRC Press, pp. 398, 1981.
[75] 郭建源,都市區域風環境影響評估分析研究,內政部建築研究所自行研究報告,2015。
[76] 方富民,大型建築物自然通風之分析研究,內政部建築研究所委託研究報告,社團法人中華民國風工程學會,2014。
[77] B. Wu, W. Cai, H. Chen, and K. Ji, “Experimental investigation on airflow pattern for active chilled beam system”, Energy and Buildings, vol. 166, pp 438-49, 2018.
[78] 林憲德,綠色建築,詹氏書局,臺北市,2006。
[79] 何明錦,戶外遮蔽因子對微氣候影響之實測與解析,內政部建築研究所協同研究報告,2011。
[80] 范家魁,擁擠空間之空氣品質計算,國立交通大學機械工程學系碩士論文,2013年。
[81] Y. Wang, H. Lina, W. Wang, Y. Liu, R. Wennersten, and Q. Sun, “Impacts of climate change on the cooling loads of residential buildings differences between occupants with different age”, 9th International Conference on Applied Energy, 2017.
[82] A. Atef, Z. Noureddine, F. Soufiane, “SPUCAL_mrt as a new model for estimating the mean radiant temperature in arid lands”, Energy Procedia, vol. 74, pp. 273-80, 2015.
[83] H. Li, “Evaluation of cool pavement strategies for heat island mitigation”, Institute of Transportation Studies, University of California, pp. 294, 2012.
[84] K. Parsons, “Heat stress standard ISO 7243 and its global application”, Industrial Health, vol. 44, pp. 368-79, 2006.
[85] C. L. Tan, N. H. Wong, and S. K. Jusuf, “Outdoor mean radiant temperature estimation in the tropical urban environment”, Building and Environment, vol. 64, pp. 118-29, 2013.
[86] L. Guo and R. G. Maghirang, “Numerical simulation of airflow and particle collection by vegetative barriers”, Engineering Applications of Computational Fluid Mechanics, vol. 6, pp. 110-22, 2012.
[87] J. Dauzat, B. Rapidel, and A. Berger, “Simulation of leaf transpiration and sap flow in virtual plants: model description and application to a coffee plantation in Costa Rica”, Agricultural and Forest Meteorology, vol. 109, pp. 143-60, 2001.
|