博碩士論文 106328013 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:59 、訪客IP:3.144.113.197
姓名 沈佳柔(chia-jou Shen)  查詢紙本館藏   畢業系所 能源工程研究所
論文名稱 利用氟化自組裝膜輔助轉印石墨烯薄膜及其於場效電晶體特性之研究
(Fluoric self-assembled monolayer (F-SAM) assisted transferring of graphene film and the transport properties on field-effect transistor(FET))
相關論文
★ 捲對捲乾轉印方法於製作高效能石墨烯透明導電膜之研究★ 利用氟素高分子摻雜於提升石墨烯導電膜的效能 與穩定性之研究
★ 以石墨烯混成陶瓷粉末於製作高導熱及高電阻之聚亞醯胺薄膜的研究★ 以奈米銅催化輔助控制多孔石墨烯之孔隙結構及其於超級電容之研究
★ 研究超潔淨石墨烯之場效電晶體 於提升基因感測器之效能★ 多孔石墨烯邊界態之氮改質於超級電容的效能研究
★ 石墨烯場效應電晶體應用於DNA生醫感測晶片之元件整合和效能評估的研究★ 添加氟化石墨烯於奈米高分子複合材料以增強防 腐性能
★ 石墨烯功能性改質於鋰離子電池負極材料 之研究★ 紫外光輻照於輔助轉印高品質石墨烯之研究
★ 氟化石墨烯複合結構於鋰離子電池的人工固態電解質界面膜之研究★ 超高附著力之氟化石墨烯薄膜於固態磨潤之研究
★ 真空壓印於二維材料轉印製程之研究★ 氟化石墨烯複合結構在鋰金屬電池中的雙功能陽極之機制探討
★ 氟化石墨烯複合材料塗層於多功能披覆之研究★ 三維結構之微孔石墨烯於超級電容器之應用與研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 石墨烯場效電晶體常因基板上電荷散射、雜質及殘留等因素,影響元件的電子性能,因此有研究提出了懸空石墨烯元件,將石墨烯做成懸空結構能避免基板因素的影響,保持石墨烯最本質的性質,但由於懸空石墨烯元件所能製作元件尺寸小且製程困難,所以本實驗選擇使用自組裝膜的方式製作場效電晶體元件,達到類懸空結構的效果,同樣能改善石墨烯元件之電性。
本研究之具體成果:(1)使用熱蒸鍍法改質基板,水接觸角從34.36°提升至115.26°。 (2)改質基板轉印石墨烯,石墨烯並不會與氟原子產生額外鍵結,因此並不會影響石墨烯品質。 (3)自組裝膜無法改善基板的表面粗糙度,改質基板比未改質基板表面粗糙度上升2.09 nm,證明基板表面粗糙度並非載子遷移率增加的主因。 (4)以改質基板搭配高分子轉印石墨烯,有助於電性提升,濕式轉印的電子和電洞遷移率可提升6.42 %和29.65 %,乾式轉印的電子及電洞遷移率可達296.32 %和300.00 %。 (5)使用直接轉印(Drc-FS)的方式,可以於不破壞石墨烯晶格結構的情形下提升效能,與一般常見的濕轉相比,其電子遷移率提高600.23 %,電洞遷移率提高713.01 %。
摘要(英) Graphene field-effect transistors often affect the electronic properties, because of charge scattering, impurities, and residues on the substrate. Therefore, research has proposed the suspended graphene device, the suspended structure to avoid the influence of substrate factors. The essential properties of graphene are maintained. However, the suspended graphene device can be made with small size and difficult processes, this experiment chooses to use a self-assembled film to make a device. The half suspended structure can improve the electrical properties of the graphene device.
Results of this research are as follows. (1) This experiment uses thermal evaporation to the modified substrate, the contact angle 34.36° increase to 115.26°. (2) Using modified substrate transfer graphene, the graphene does not have bonding with the fluorine atom, and it does not affect the graphene quality. (3) The surface roughness of the modified substrate is 2.09 nm higher than the unmodified substrate. Therefore, the increased mobility is not mainly related to the roughness of the substrate. (4) Using the polymer transfer graphene on the modified substrate, which contributes to electrical improvement. Electron mobility and hole mobility of the wet transfer can be increased by 6.42% and 29.65%. Electron mobility and hole mobility of the dry transfer can be increased by 296.32% and 300.00%. (5) Using direct transfer (Drc-FS), the F-SAM can successfully increase mobility without alter the graphene lattice. Compared with the common wet transfer, the electron mobility is increased by 600.23 % and the hole mobility is increased by 713.01 %.
關鍵字(中) ★ 自組裝膜
★ 場效電晶體
★ 石墨烯
關鍵字(英)
論文目次 摘要 i
Abstract ii
目錄 iv
圖目錄 vi
表目錄 x
第一章 緒論 1
第二章 文獻回顧與研究動機 2
2.1 文獻回顧 2
2.1.1二維材料 2
2.1.2懸空石墨烯元件 12
2.1.3自組裝緩衝層 13
2.1.4氟化層 16
2.2 研究動機 19
第三章 研究架構與流程 20
3.1 實驗藥品與設備 20
3.1.1實驗藥品 20
3.1.2實驗設備 22
3.1.3分析儀器 23
3.2 實驗架構與流程 25
3.1.1石墨烯成長 26
3.1.2改質基板方法 29
3.1.3不同轉印方法 30
3.1.3場效電晶體元件製作 32
第四章 結果與討論 34
4.1銅箔成長石墨烯 34
4.2氟化改質基板 37
4.2.1改質基板方法 37
4.2.2參數優化 44
4.3不同轉印方法探討 53
4.4元件性能探討 68
4.4.1石墨烯元件 68
第五章 結論 80
第六章 未來工作 81
參考文獻 82
參考文獻 1. Schwierz, F., Graphene Transistors: Status, Prospects, and Problems. Proceedings of the IEEE, 2013. 101(7): p. 1567-1584.
2. KS, N., G. AK, M. SV, J. D, Z. Y, D. SV, G. IV, and F. AA, Electric Field Effect in Atomically Thin Carbon Films. SCIENCE, 2004. 306(5696): p. 666-669.
3. Schwierz, F., Nanoelectronics: Flat transistors get off the ground. Nat Nanotechnol, 2011. 6(3): p. 135-6.
4. Shen, P.-C., Y. Lin, H. Wang, J.-H. Park, W.S. Leong, A.-Y. Lu, T. Palacios, and J. Kong, CVD Technology for 2-D Materials. IEEE Transactions on Electron Devices, 2018. 65(10): p. 4040-4052.
5. Lee, H.C., W.-W. Liu, S.-P. Chai, A.R. Mohamed, A. Aziz, C.-S. Khe, N.M.S. Hidayah, and U. Hashim, Review of the synthesis, transfer, characterization and growth mechanisms of single and multilayer graphene. RSC Advances, 2017. 7(26): p. 15644-15693.
6. Song, Y., S. Chang, S. Gradecak, and J. Kong, Visibly-Transparent Organic Solar Cells on Flexible Substrates with All-Graphene Electrodes. Advanced Energy Materials, 2016. 6(20): p. 1600847.
7. Wang, X., L. Zhi, and K. Müllen, Transparent, Conductive Graphene Electrodes for Dye-Sensitized Solar Cells. Nano Letters, 2008. 8(1): p. 323-327.
8. Pumera, M., Graphene in biosensing. Materials Today, 2011. 14(7-8): p. 308-315.
9. Wu, Y., D.B. Farmer, F. Xia, and P. Avouris, Graphene Electronics: Materials, Devices, and Circuits. Proceedings of the IEEE, 2013. 101(7): p. 1620-1637.
10. Khan, U., T.H. Kim, H. Ryu, W. Seung, and S.W. Kim, Graphene Tribotronics for Electronic Skin and Touch Screen Applications. Adv Mater, 2017. 29(1).
11. Wang, J., M. Liang, Y. Fang, T. Qiu, J. Zhang, and L. Zhi, Rod-Coating: Towards Large-Area Fabrication of Uniform Reduced Graphene Oxide Films for Flexible Touch Screens. Adv Mater, 2012. 24(21): p. 2874-8.
12. Seyller, T., A. Bostwick, K.V. Emtsev, K. Horn, L. Ley, J.L. McChesney, T. Ohta, J.D. Riley, E. Rotenberg, and F. Speck, Epitaxial graphene: a new material. physica status solidi (b), 2008. 245(7): p. 1436-1446.
13. Li, X., W. Cai, L. Colombo, and R.S. Ruoff, Evolution of Graphene Growth on Ni and Cu by Carbon Isotope Labeling. Nano Letters, 2009. 9(12): p. 4268-4272.
14. Fang, W., A.L. Hsu, Y. Song, and J. Kong, Review of Large-area Bilayer Graphene Synthesis by Chemical Vapor Deposition. Nanoscale, 2015. 7(48): p. 20335-51.
15. Shin, Y.C., M.S. Dresselhaus, and J. Kong, Preparation of Graphene with Large Area, in Carbon Nanotubes and Graphene. 2014. p. 39-76.
16. Zhao, G., X. Li, M. Huang, Z. Zhen, Y. Zhong, Q. Chen, X. Zhao, Y. He, R. Hu, T. Yang, R. Zhang, C. Li, J. Kong, J.B. Xu, R.S. Ruoff, and H. Zhu, The physics and chemistry of graphene-on-surfaces. Chem Soc Rev, 2017. 46(15): p. 4417-4449.
17. Vlassiouk, I., P. Fulvio, H. Meyer, N. Lavrik, S. Dai, P. Datskos, and S. Smirnov, Large scale atmospheric pressure chemical vapor deposition of graphene. Carbon, 2013. 54: p. 58-67.
18. Ni, Z.H., H.M. Wang, Z.Q. Luo, Y.Y. Wang, T. Yu, Y.H. Wu, and Z.X. Shen, The effect of vacuum annealing on graphene. Journal of Raman Spectroscopy, 2009. 41(5): p. 479-483.
19. Hao, Y., B. Srinivasan, L. Wang, Y. Liu, H. Chen, S. Nie, X.-H. Wang, H. Chou, C. Tan, B. Fallahazad, R. Hariharaputran, C. W Magnuson, E. Tutuc, B. I Yakobson, K. F McCarty, Y.-W. Zhang, P. Kim, J. Hone, L. Colombo, and R. Ruoff, The Role of Surface Oxygen in the Growth of Large Single-Crystal Graphene on Copper, 2013. 342(6159): p. 720-723.
20. Ding, D., P. Solís-Fernández, R.M. Yunus, H. Hibino, and H. Ago, Behavior and role of superficial oxygen in Cu for the growth of large single-crystalline graphene. Applied Surface Science, 2017. 408: p. 142-149.
21. Zhang, X., L. Wang, J. Xin, B.I. Yakobson, and F. Ding, Role of hydrogen in graphene chemical vapor deposition growth on a copper surface. J Am Chem Soc, 2014. 136(8): p. 3040-7.
22. Reina, A., H. Son, L. Jiao, B. Fan, M.S. Dresselhaus, Z. Liu, and J. Kong, Transferring and Identification of Single- and Few-Layer Graphene on Arbitrary Substrates. The Journal of Physical Chemistry C, 2008. 112(46): p. 17741-17744.
23. Li, X., Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, R.D. Piner, L. Colombo, and R.S. Ruoff, Transfer of Large-Area Graphene Films for High-Performance Transparent Conductive Electrodes. Nano Letters, 2009. 9(12): p. 4359-4363.
24. Bae, S., H. Kim, Y. Lee, X. Xu, J.S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H.R. Kim, Y.I. Song, Y.J. Kim, K.S. Kim, B. Ozyilmaz, J.H. Ahn, B.H. Hong, and S. Iijima, Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat Nanotechnol, 2010. 5(8): p. 574-8.
25. Nasir, T., B.J. Kim, K.W. Kim, S.H. Lee, H.K. Lim, D.K. Lee, B.J. Jeong, H.C. Kim, H.K. Yu, and J.Y. Choi, Design of softened polystyrene for crack- and contamination-free large-area graphene transfer. Nanoscale, 2018. 10(46): p. 21865-21870.
26. Kang, J., D. Shin, S. Bae, and B.H. Hong, Graphene transfer: key for applications. Nanoscale, 2012. 4(18): p. 5527-37.
27. Zhang, Z., J. Du, D. Zhang, H. Sun, L. Yin, L. Ma, J. Chen, D. Ma, H.M. Cheng, and W. Ren, Rosin-enabled ultraclean and damage-free transfer of graphene for large-area flexible organic light-emitting diodes. Nat Commun, 2017. 8: p. 14560.
28. Chen, T.L., D.S. Ghosh, V. Mkhitaryan, and V. Pruneri, Hybrid transparent conductive film on flexible glass formed by hot-pressing graphene on a silver nanowire mesh. ACS Appl Mater Interfaces, 2013. 5(22): p. 11756-61.
29. Martins, L.G., Y. Song, T. Zeng, M.S. Dresselhaus, J. Kong, and P.T. Araujo, Direct transfer of graphene onto flexible substrates. Proc Natl Acad Sci U S A, 2013. 110(44): p. 17762-7.
30. Abhilash, T.S., R. De Alba, N. Zhelev, H.G. Craighead, and J.M. Parpia, Transfer printing of CVD graphene FETs on patterned substrates. Nanoscale, 2015. 7(33): p. 14109-13.
31. Ma, X., Q. Liu, D. Xu, Y. Zhu, S. Kim, Y. Cui, L. Zhong, and M. Liu, Capillary-Force-Assisted Clean-Stamp Transfer of Two-Dimensional Materials. Nano Lett, 2017. 17(11): p. 6961-6967.
32. Liu, L., X. Liu, Z. Zhan, W. Guo, C. Xu, J. Deng, D. Chakarov, P. Hyldgaard, E. Schröder, A. Yurgens, and J. Sun, A Mechanism for Highly Efficient Electrochemical Bubbling Delamination of CVD-Grown Graphene from Metal Substrates. Advanced Materials Interfaces, 2016. 3(8) : p. 1500492.
33. Wang, X., L. Tao, Y. Hao, Z. Liu, H. Chou, I. Kholmanov, S. Chen, C. Tan, N. Jayant, Q. Yu, D. Akinwande, and R.S. Ruoff, Direct delamination of graphene for high-performance plastic electronics. Small, 2014. 10(4): p. 694-8.
34. Cherian, C.T., F. Giustiniano, I. Martin-Fernandez, H. Andersen, J. Balakrishnan, and B. Ozyilmaz, ′Bubble-free′ electrochemical delamination of CVD graphene films. Small, 2015. 11(2): p. 189-94.
35. Lv, R., J.A. Robinson, R.E. Schaak, D. Sun, Y. Sun, T.E. Mallouk, and M. Terrones, Transition metal dichalcogenides and beyond: synthesis, properties, and applications of single- and few-layer nanosheets. Acc Chem Res, 2015. 48(1): p. 56-64.
36. Splendiani, A., L. Sun, Y. Zhang, T. Li, J. Kim, C.Y. Chim, G. Galli, and F. Wang, Emerging photoluminescence in monolayer MoS2. Nano Lett, 2010. 10(4): p. 1271-5.
37. Coleman, J.N., M. Lotya, A. O’Neill, S.D. Bergin, P.J. King, U. Khan, K. Young, A. Gaucher, S. De, R.J. Smith, I.V. Shvets, S.K. Arora, G. Stanton, H.-Y. Kim, K. Lee, G.T. Kim, G.S. Duesberg, T. Hallam, J.J. Boland, J.J. Wang, J.F. Donegan, J.C. Grunlan, G. Moriarty, A. Shmeliov, R.J. Nicholls, J.M. Perkins, E.M. Grieveson, K. Theuwissen, D.W. McComb, P.D. Nellist, and V. Nicolosi, Two-Dimensional Nanosheets Produced by Liquid Exfoliation of Layered Materials. Science, 2011. 331(6017): p. 568-571.
38. Zhang, W., J.K. Huang, C.H. Chen, Y.H. Chang, Y.J. Cheng, and L.J. Li, High-gain phototransistors based on a CVD MoS(2) monolayer. Adv Mater, 2013. 25(25): p. 3456-61.
39. Ma, D., J. Shi, Q. Ji, K. Chen, J. Yin, Y. Lin, Y. Zhang, M. Liu, Q. Feng, X. Song, X. Guo, J. Zhang, Y. Zhang, and Z. Liu, A universal etching-free transfer of MoS2 films for applications in photodetectors. Nano Research, 2015. 8(11): p. 3662-3672.
40. Lin, Z., Y. Zhao, C. Zhou, R. Zhong, X. Wang, Y.H. Tsang, and Y. Chai, Controllable Growth of Large-Size Crystalline MoS2 and Resist-Free Transfer Assisted with a Cu Thin Film. Sci Rep, 2015. 5: p. 18596.
41. Lin, Y.-M., K.A. Jenkins, A. Valdes-Garcia, J.P. Small, D.B. Farmer, and P. Avouris, Operation of Graphene Transistors at Gigahertz Frequencies. NANO LETTERS, 2009. 9(1): p. 422-426.
42. Adam, S., E.H. Hwang, V.M. Galitski, and S.D. Sarma, A self-consistent theory for graphene transport. PNAS, 2007. 104(47): p. 18392–18397.
43. Ni, Z.H., L.A. Ponomarenko, R.R. Nair, R. Yang, S. Anissimova, I.V. Grigorieva, F. Schedin, P. Blake, Z.X. Shen, E.H. Hill, K.S. Novoselov, and A.K. Geim, On resonant scatterers as a factor limiting carrier mobility in graphene. Nano Lett, 2010. 10(10): p. 3868-72.
44. Suk, J.W., W.H. Lee, J. Lee, H. Chou, R.D. Piner, Y. Hao, D. Akinwande, and R.S. Ruoff, Enhancement of the electrical properties of graphene grown by chemical vapor deposition via controlling the effects of polymer residue. Nano Lett, 2013. 13(4): p. 1462-7.
45. Pirkle, A., J. Chan, A. Venugopal, D. Hinojos, C.W. Magnuson, S. McDonnell, L. Colombo, E.M. Vogel, R.S. Ruoff, and R.M. Wallace, The effect of chemical residues on the physical and electrical properties of chemical vapor deposited graphene transferred to SiO2. Applied Physics Letters, 2011. 99(12) : p. 122108.
46. Farmer, D.B., R. Golizadeh-Mojarad, V. Perebeinos, Y.M. Lin, G.S. Tulevski, J.C. Tsang, and P. Avouris, Chemical doping and electron-hole conduction asymmetry in graphene devices. Nano Lett, 2009. 9(1): p. 388-92.
47. Bolotin, K.I., K.J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, and H.L. Stormer, Ultrahigh electron mobility in suspended graphene. Solid State Communications, 2008. 146(9-10): p. 351-355.
48. J. SCOTT BUNCH, A.M.V.D.Z., SCOTT S. VERBRIDGE, IAN W. FRANK, DAVID M. TANENBAUM, JEEVAK M. PARPIA, HAROLD G. CRAIGHEAD, PAUL L. MCEUEN, Electromechanical Resonators from Graphene Sheets. SCIENCE, 2007. 315: p. 490-493.
49. Balandin, A.A., S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C.N. Lau, Superior Thermal Conductivity of Single-Layer Graphene. Nano Letters, 2008. 8(3): p. 902-907.
50. Lee, W.H., J. Park, Y. Kim, K.S. Kim, B.H. Hong, and K. Cho, Control of graphene field-effect transistors by interfacial hydrophobic self-assembled monolayers. Adv Mater, 2011. 23(30): p. 3460-4.
51. Ulman, A., Formation and Structure of Self-Assembled Monolayers. Chemical Reviews, 1996. 96(4): p. 1533-1554.
52. Ito, Y., A.A. Virkar, S. Mannsfeld, J.H. Oh, M. Toney, J. Locklin, and Z. Bao, Crystalline Ultrasmooth Self-Assembled Monolayers of Alkylsilanes for Organic Field-Effect Transistors. Journal of the American Chemical Society, 2009. 131(26): p. 9396-9404.
53. Roya Maboudian , W. Robert Ashurst, and C. Carraro, Self-assembled monolayers as anti-stiction coatings for MEMS: characteristics and recent developments. Elsevier, 2000. 82(1-3): p. 219-223.
54. Zhuang, Y.X., O. Hansen, T. Knieling, C. Wang, P. Rombach, W. Lang, W. Benecke, M. Kehlenbeck, and J. Koblitz, Vapor-Phase Self-Assembled Monolayers for Anti-Stiction Applications in MEMS. Journal of Microelectromechanical Systems, 2007. 16(6): p. 1451-1460.
55. Tu, Q., H.S. Kim, T.J. Oweida, Z. Parlak, Y.G. Yingling, and S. Zauscher, Interfacial Mechanical Properties of Graphene on Self-Assembled Monolayers: Experiments and Simulations. ACS Appl Mater Interfaces, 2017. 9(11): p. 10203-10213.
56. Yan, Z., Z. Sun, W. Lu, J. Yao, Y. Zhu, and J.M. Tour, <Controlled Modulation of Electronic properties of graphene.pdf>. ACS Nano, 2011. 5(2): p. 1535-1540.
57. Chen, S.Y., P.H. Ho, R.J. Shiue, C.W. Chen, and W.H. Wang, Transport/magnetotransport of high-performance graphene transistors on organic molecule-functionalized substrates. Nano Lett, 2012. 12(2): p. 964-9.
58. Li, Y., C.Y. Xu, P. Hu, and L. Zhen, Carrier control of MoS2 nanoflakes by functional self-assembled monolayers. ACS Nano, 2013. 7(9): p. 7795-804.
59. Wang, B., M. Huang, L. Tao, S.H. Lee, A.R. Jang, B.W. Li, H.S. Shin, D. Akinwande, and R.S. Ruoff, Support-Free Transfer of Ultrasmooth Graphene Films Facilitated by Self-Assembled Monolayers for Electronic Devices and Patterns. ACS Nano, 2016. 10(1): p. 1404-10.
60. Ho, K.I., M. Boutchich, C.Y. Su, R. Moreddu, E.S. Marianathan, L. Montes, and C.S. Lai, A Self-Aligned High-Mobility Graphene Transistor: Decoupling the Channel with Fluorographene to Reduce Scattering. Adv Mater, 2015. 27(41): p. 6519-25.
61. Jeon, J., S.K. Jang, S.M. Jeon, G. Yoo, Y.H. Jang, J.H. Park, and S. Lee, Layer-controlled CVD growth of large-area two-dimensional MoS2 films. Nanoscale, 2015. 7(5): p. 1688-95.
指導教授 蘇清源 審核日期 2019-8-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明