參考文獻 |
[1] J.-C. Lin, “Initial synchronization assisted by inherent diversity over time-varying frequencyselective fading channels,” IEEE Trans. Wireless Commun., vol. 13, no. 5, pp. 2518-2529, May 2014.
[2] J.-C. Lin, Y.-T. Sun, and H. V. Poor, “Initial synchronization exploiting inherent diversity for lte sector search process,” IEEE Trans. Wireless Commun., vol. 15, pp. 1114–1128, Feb. 2016.
[3] Recommendation G.8261, Timing and synchronization aspects in packet networks, ITU-T Std.
[4] Recommendation G.8271, Time and phase synchronization aspects in packet networks, ITU-T Std.
[5] TS 145 010, Radio Subsystem Synchronization, ETSI Std.
[6] TS 25.104, Universal Mobile Telecommunication Systems (UMTS), UTRA BS FDD, Radio Transmission and Reception, 3GPP Std.
[7] TS 25.105, Universal Mobile Telecommunication Systems (UMTS), UTRA BS TDD, Radio Transmission and Reception, 3GPP Std.
[8] TS 25.123, Requirements for support of radio resource management (TDD), 3GPP Std.
[9] TS 25.402, Universal Mobile Telecommunications Systems (UMTS); Synchronization in UTRAN Stage 2, 3GPP Std.
[10] C.S0010-B, Recommended Minimum Performance Standards for CDMA2000 Spread Spectrum Base Stations, 3GPP2 Std.
[11] C.S0002-C, Physical Layer Standard for CDMA2000 Spread Spectrum Systems, 3GPP2 Std.
[12] Evolved Universal Terrestrial Radio Access (E-UTRA); Requirements for Support of Radio Resource Management, 3GPP TS 36.133, 3GPP Std. v. 10.1.0, 2011.
[13] Evolved Universal Terrestrial Radio Access (E-UTRA); TDD Home eNode B (HeNB) Radio Frequency (RF) Requirements Analysis, 3GPP TR 36.922, 3GPP Std. v. 10.0.0, 2011.
[14] Evolved Universal Terrestrial Radio Access (E-UTRA); User Equipment (UE) Radio Transmission and Reception (3GPP TS 36.101 version 10.3.0 Release 10), 3GPP Std. v. 10.3.0, 2011.
[15] 5G white paper: New wave towards future societies in the 2020s, 5G Forum Std., Mar. 2015.
[16] 5G white paper, [Online] Available: http://www.ngmn.org/5G-white-paper.html, NGMN Alliance Std.
[17] D. G. Brennan, “Linear diversity combining techniques,” Proc. IRE, vol. 47, pp. 1075–1102, June 1959.
[18] V. K. Dwivedi and G. Singh, “Error-rate analysis of the OFDM for correlated Nakagami-m fading channel by using maximal-ratio combining diversity,” Intern. J. Microwave and Wireless Technol., vol. 3, pp. 717–726, June 2011.
[19] J.-C. Lin, H.-K. Chang, M.-L. Ku, and H. V. Poor, “Impact of imperfect source-to-relay CSI in amplify-and-forward relay networks,” IEEE Trans. Veh. Technol., vol. 66, pp. 5056–5069, June 2017.
[20] M. K. Simon and M. S. Alouini, Digital Communication over Fading Channels., New York: Wiley, 2005.
[21] K. I. Chan and J. C.-I. Chuang, “Required interleaving depth in Rayleigh fading channels,” in Proc. IEEE Global Telecommunications Conference, London, U. K., Nov. 18–22, 1996, pp. 1417–1421.
[22] M.-S. Alouini and A. J. Goldsmith, “Adaptive modulation over Nakagami fading channels,” Wireless Personal Communications, Kluwer Academic Publishers, vol. 13, pp. 119–143, 2000.
[23] J. Anastasov, S. Panić, M. Stefanović, and V. Milenković, “Capacity of correlative Nakagami-m fading channels under adaptive transmission and maximal-ratio combining diversity technique,” Journ. of Commun. Technol. and Electron., Pleiades Publishing Inc., vol. 58, pp. 1227–1234, 2013.
[24] M. D. Yacoub, J. E. Bautista, and L. G. D. R. Guedes, “On higher order statistics of the Nakagami-m distribution,” IEEE Trans. Veh. Technol., vol. 48, pp. 2360–2369, May 1999.
[25] M. D. Yacoub, C. R. C. M. da Silva, and J. E. V. Bautista, “Second-order statistics for diversity-combining techniques in Nakagami-fading channels,” IEEE Trans. Veh. Technol., vol. 50, pp. 1464–1470, Nov. 2001.
[26] C. D. Iskander and P. T. Mathiopoulos, “Analytical level crossing rates and average fade durations for diversity techniques in Nakagami fading channels,” IEEE Trans. on Commun., vol. 50, pp. 1301–1309, Aug. 2002.
[27] X. Dong and N. C. Beaulieu, “Average level crossing rate and average fade duration of selection diversity,” IEEE Commun. Lett., vol. 5, pp. 396–398, Oct. 2001.
[28] ------, “Average level crossing rate and average fade duration of low-order maximal ratio diversity with unbalanced channels,” IEEE Commun. Lett., vol. 6, pp. 135–137, Apr. 2002.
[29] J.-C. Lin, “An approach to the second-order statistics of maximum-ratio combining-like reception over independent Nakagami channels,” IEEE Trans. Veh. Technol., vol. 61, pp. 859–865, Feb. 2012.
[30] F. Adachi, M. T. Feeney, and J. D. Parsons, “Effects of correlated fading on level crossing rates and average fade durations with predetection diversity reception,” IEE Proceedings, vol. 135, pp. 11–17, Feb. 1988.
[31] J. C. S. S. Filho, G. Fraidenraich, and M. D. Yacoub, “Exact crossing rates of dual diversity over unbalanced correlated Rayleigh channels,” IEEE Commun. Lett., vol. 10, pp. 37–39, Jan. 2006.
[32] D. B. da Costa, M. D. Yacoub, J. C. S. S. Filho, and G. Fraidenraich, “General exact level crossing rate and average fade duration for dual-diversity combining of nonidentical correlated Weibull signals,” IEEE Trans. Veh. Technol., vol. 56, pp. 3571–3577, Nov. 2007.
[33] G. Fraidenraich, M. D. Yacoub, J. R. Mendes, and J. C. S. S. Filho, “Second-order statistics for diversity-combining of non-identical correlated Hoyt signals,” IEEE Trans. on Commun., vol. 56, pp. 183–188, Feb. 2008.
[34] E. G. Larsson, O. Edfors, F. Tufvesson, and T. L. Marzetta, “Massive MIMO for next generation wireless systems,” IEEE Commun. Mag., vol. 52, pp. 169–195, Feb. 2014.
[35] V. A. Aalo, “Performance of maximal-ratio diversity systems in a correlated Nakagami-m fading environment,” IEEE Trans. on Commun., vol. 43, pp. 2360–2367, Aug. 1995.
[36] Q. T. Zhang, “Maximal-ratio combining over Nakagami fading channels with an arbitrary branch covariance matrix,” IEEE Trans. Veh. Technol., vol. 48, pp. 1141–1150, July 1999.
[37] M. S. Alouini, A. Abdi, and M. Kaveh, “Sum of gamma variates and performance of wireless communication systems over Nakagami-fading channels,” IEEE Trans. Veh. Technol., vol. 50, pp. 1471–1480, Nov. 2001.
[38] K. Zhang, Z. Song, and Y. L. Guan, “Cholesky decomposition model for correlated MRC diversity systems in Nakagami fading channels,” in Proc. IEEE Veh. Technol. Conf., 2002, (VTC 2002), 2002, pp. 1515–1519.
[39] D. Li and V. K. Prabhu, “Average level crossing rates and average fade durations for maximal-ratio combining in correlated Nakagami channels,” in Proc. IEEE Wireless Commun. and Network. Conf., March 2004, (WCNC 2004), 2004, pp. 339–344.
[40] X. Dong and N. C. Beaulieu, “Optimal maximal ratio combining with correlated diversity branches,” IEEE Commun. Lett., vol. 6, pp. 22–24, Jan. 2002.
[41] M. D. Yacoub, G. Fraidenraich, and J. C. S. S. Filho, “Nakagami-m phase-envelope joint distribution,” Electr. Lett., vol. 41, pp. 259–261, Mar. 2005.
[42] M. D. Yacoub, “Nakagami-m phase-envelope joint distribution: An improved model,” in Proc. IEEE MTT-S Intern. Microw. Optoelec. Conf. (IMOC 2009), 2009, pp. 335–339.
[43] X. Dong and N. C. Beaulieu, “Nakagami-m phase-envelope joint distribution: A new model,” IEEE Trans. Veh. Technol., vol. 59, pp. 1552–1557, Mar. 2010.
[44] M. S. Alouini, A. Scaglione, and G. B. Giannakis, “PCC: Principal components combining for dense correlated multipath fading environments,” in Proc. IEEE Veh. Technol. Conf., 2000, (VTC 2000), 2000, pp. 2510–2517.
[45] P. Loskot and N. Beaulieu, “Decorrelation and orthogonalization of correlated diversity branches for HS/MRC diversity,” in Proc. IEEE Veh. Technol. Conf. 2008, (VTC 2008-Spring), 2008, pp. 335–339.
[46] C. Polprasert and J. A. Ritcey, “A Nakagami fading phase difference distribution and its impact on BER performance,” IEEE Trans. Wireless Commun., vol. 7, pp. 2805–2813, July 2008.
[47] K. Zhang, Z. Song, and Y. L. Guan, “Simulation of Nakagami fading channels with arbitrary cross-correlation and fading parameters,” IEEE Trans. Wireless Commun., vol. 3, pp. 1463–1468, May 2004.
[48] N. C. Beaulieu and C. Cheng, “Efficient Nakagami-m fading channel simulation,” IEEE Trans. Veh. Technol., vol. 54, pp. 413–424, Feb. 2005.
[49] J. C. S. S. Filho and M. D. Yacoub, “On the simulation and correlation properties of phase-envelope Nakagami fading processes,” IEEE Trans. on Commun., vol. 57, pp. 906–909, Apr. 2009.
[50] J. C. S. S. Filho, B. V. Teixeira, M. D. Yacoub, and G. T. F. de Abreu, “The RM Nakagami fading channel simulator,” IEEE Trans. Wireless Commun., vol. 12, pp. 2323–2333, May 2013.
[51] R. D. Dony, Karhunen-Loéve Transform. Editors: K. R. Rao and P. C. Yip, Boca Raton, CRC Press LLC, 2001.
[52] J. G. Proakis and M. Salehi, Digital Communications. 5th ed., McGraw-Hill, 2008.
[53] J.-C. Lin, “Revisit on maximum ratio combining reception practically attained across correlated Nakagami-m branches,” in Proc. Wireless Telecommunications Symposium, (WTS 2015), New York, USA, Apr. 15–17, 2015.
[54] M. Nakagami, The m-distribution a general formula of intensity distribution of rapid fading. Statistical Methods in Radio Wave Propagation, W. C. Hoffman, Ed. Elmsford, NY: Pergamon, 1960.
[55] I. S. Gradshteyn, I. M. Ryzhik, and A. Jeffrey, Table of Integrals, Series, and Products., ELSEVIER, Academic Press, 2007.
[56] S. Haykin, Communication Systems., John Wiley & Sons, Inc., 2001.
[57] S. Kotz and J. Adams, “Distribution of sum of identically distributed exponentially correlated gamma variables,” Annals of Math Statistics, vol. 35, pp. 227–283, 1964.
[58] Q. T. Zhang, “A decomposition technique for efficient generation of correlated Nakagami fading channels,” IEEE Trans. Wireless Commun. vol. 18, pp. 2385–2392, Nov. 2000.
[59] W. C. Jakes, Microwave Mobile Communications. New York: Wiley, 1974.
[60] Physical Channels and Modulation (Release 8), Technical Specification Group Radio Access Network; Evolved University Terrestrial Radio Access (E-UTRA), 3GPP Std. TS 36.211 V8.3.0, 2005.
[61] J. Kim, J. Hwang, K. J. Lee, and I. Lee, “Blockwise amplify-and-forward relaying strategies for multipoint-to-multipoint MIMO networks,” IEEE Trans. Wireless Commun., vol. 10, pp. 2028–2033, July 2011.
[62] F. Khan, Y. Chen, and M. Alouini, “Novel receivers for AF relaying with distributed STBC using cascaded and disintegrated channel estimation,” IEEE Trans. Wireless Commun., vol. 11, pp. 1370–1379, Apr. 2012.
[63] T. Q. Duong, G. C. Alexandropoulos, H. Zepernick, and T. A. Tsiftsis, “Orthogonal space-time block codes with CSI-assisted amplify-and-forward relaying in correlated Nakagami-m fading channels,” IEEE Trans. Veh. Technol., vol. 60, pp. 882–889, Mar. 2011.
[64] Z. Li, X. G. Xia, and M. H. Lee, “A simple orthogonal space-time coding scheme for asynchronous cooperative systems for frequency selective fading channels,” IEEE Trans. on Commun., vol. 58, pp. 2219–2224, Aug. 2010.
[65] X. Li, C. Xing, Y.-C. Wu, and S. C. Chan, “Timing estimation and resynchronization for amplify-and-forward communication systems,” IEEE Trans. Signal Processing, vol. 58, pp. 2218–2229, Apr. 2010.
[66] Q. Huang, M. Ghogho, J. Wei, and P. Ciblat, “Practical timing and frequency synchronization for OFDM-based cooperative systems,” IEEE Trans. Signal Processing, vol. 58, pp. 3706–3716, July 2010.
[67] Y. Yao and X. Dong, “Multiple CFO mitigation in amplify-and-forward cooperative OFDM transmission,” IEEE Trans. on Commun., vol. 60, pp. 3844–3854, Dec. 2012.
[68] A. A. Nasir, H. Mehrpouyan, S. Durrani, S. D. Blostein, R. A. Kennedy, and B. Ottersten, “Transceiver design for distributed STBC based AF cooperative networks in the presence of timing and frequency offsets,” IEEE Trans. Signal Processing, vol. 61, pp. 3143–3158, June 2013.
[69] S. Alamouti, “A simple transmit diversity technique for wireless communications,” IEEE Trans. Signal Processing, vol. 16, pp. 1451–1458, Oct. 1998.
[70] K.-P. Chou and J.-C. Lin, “Disintegrated channel estimation in scalable filter-and-forward relay network with IRI coordination,” in Proc. IEEE Wireless Telecommunications Symposium, (WTS 2015), New York, USA, Apr. 15–17, 2015.
[71] K.-P. Chou, J.-C. Lin, and H. V. Poor, “Disintegrated channel estimation in filter-and-forward relay networks,” IEEE Trans. Commun., vol. 64, pp. 2835–2847, July 2016.
[72] M. Malkawi and I. M. Kim, “Hard/soft detection with limited CSI for multi-hop systems,” IEEE Trans. Wireless Commun., vol. 8, pp. 3435–3441, July 2009.
[73] P. Liu and I. M. Kim, “Optimum/sub-optimum detectors for multi-branch dual-hop amplify-and-forward cooperative diversity networks with limited CSI,” IEEE Trans. Wireless Commun., vol. 9, pp. 78–85, Jan. 2010.
[74] Z. Peng, L.-C. Wang, W. Xu, and C. Zhao, “Achievable rate analysis and feedback design for multiuser MIMO relay with imperfect CSI,” IEEE Trans. Wireless Commun., vol. 13, pp. 780–793, Feb. 2014.
[75] S. Han, S. Ahn, E. Oh, and E. Hong, “Effect of channel-estimation error on BER performance in cooperative transmission,” IEEE Trans. Veh. Technol., vol. 58, pp. 2083–2088, May 2009.
[76] O. Amin, S. S. Ikki, and M. Uysal, “On the performance analysis of multirelay cooperative diversity systems with channel estimation errors,” IEEE Trans. Veh. Technol., vol. 60, pp. 2050–2059, June 2011.
[77] J.-C. Lin and H. V. Poor, “Principal component analysis and combining for spatially correlated Nakagami-m fading channels,” IEEE Trans. Wireless Commun., under R1 review.
[78] S. Haykin, Communication Systems. John Wiley, 2001.
[79] S. P. Lloyd, “Least squares quantization in PCM,” IEEE Trans. Wireless Commun., vol. 28, pp. 129–137, Mar. 1982.
[80] M. Skonglund and G. Jöngren, “On the capacity of a multiple-antenna communication link with channel side information,” IEEE Trans. Wireless Commun., vol. 21, pp. 395–405, Apr. 2003.
[81] V. Lau, Y. Liu, and T.-A. Chen, “On the design of MIMO block-fading channels with feedback-link capacity constraint,” IEEE Trans. Commun., vol. 52, pp. 62–70, Jan. 2004.
[82] K. Mukkavilli, A. Sabharwal, E. Erkip, and B. A. Aazhang, “On beamforming with finite rate feedback in multiple antenna systems,” IEEE Trans. Wireless Commun., vol. 49, pp. 2735–2747, Oct. 2003.
[83] A. S. D. Rajan and B. A. Aazhang, “Outage behavior with delay and CSIT,” in Proc. IEEE Intern. Conf. on Commun., June 2004, pp. 578–582.
[84] A. Hjørungnes and D. Gesbert, “Precoding of orthogonal space-time block codes in arbitrarily correlated MIMO channels: Iterative and closed-form solutions,” IEEE Trans. Wireless Commun., vol. 6, pp. 1072–1082, Mar. 2007.
[85] S. Zhou and B. Li, “BER criterion and codebook construction for finite-rate precoded spatial multiplexing with linear receivers,” IEEE Trans. Signal Processing, vol. 54, pp. 1653–1665, May 2006.
[86] D. J. Love, R. W. Heath, and T. Strohmer, “Grassmannian beamforming for multiple-input multiple-output wireless systems,” IEEE Trans. Wireless Commun., vol. 49, pp. 2735–2747, Oct. 2003.
[87] A. Narula, M. J. Lopez, M. D. Trott, and G. W. Wornell, “Efficient use of side information in multiple-antenna data transmission over fading channels,” IEEE Trans. Wireless Commun., vol. 16, pp. 1423–1436, Oct. 1998.
[88] O. Amin, B. Gedik, and M. Uysal, “Channel estimation for amplify-and-forward relaying: Cascaded against disintegrated estimators,” IET Commun., vol. 4, pp. 1207–1216, July 2010.
[89] X. B. Z. Fang, X. Zho and Z. Wang, “Outage minimized relay selection with partial channel information,” in Proc. IEEE Intern. Conf. on Acoustics, Speech and Signal Process., (ICASSP 2009), Apr. 2009, pp. 2617–2620.
[90] M. M. Abdallah and H. C. Papadopoulos, “Beamforming algorithms for information relaying in wireless sensor networks,” IEEE Trans. Signal Processing, vol. 56, pp. 4772–4784, Oct. 2008.
[91] E. Karamad, B. Khoshnevis, and R. S. Adve, “Quantization and bit allocation for channel state feedback in relay-assisted wireless networks,” IEEE Trans. Signal Processing, vol. 61, pp. 327–339, Jan. 2013.
[92] T. M. Cover and J. A. Thomas, Elements of Information Theory. John Wiley & Sons, Inc., 1991.
[93] R. E. Ziemer and W. H. Tranter, Principles of Communications: Systems, Modulation, and Noise., John Wiley & Sons, 2010.
[94] J. N. Laneman and G. W. Wornell, “Energy efficient antenna sharing and relay for wireless networks,” in Proc. IEEE Communications Networking Conference, Chicago, IL, US, Sept. 23–28, 2000, pp. 7–12.
[95] M. O. Hasna and M. S. Alouini, “A performance study of dual-hop transmission with fixed gain relays,” IEEE Trans. Wireless Commun., vol. 3, pp. 1963–1968, Nov. 2004.
[96] M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Dover, 1970.
[97] P. A. Anghel and M. Kaveh, “Exact symbol error probability of a cooperative network in a Rayleigh-fading environment,” IEEE Trans. Wireless Commun., vol. 3, pp. 1416–1421, Sept. 2004.
[98] M. K. Simon and M.-S. Alouini, Digital Communication over Fading Channels. John Wiley & Sons, 2000.
[99] I. S. Gradshteyn and I. M. Ryzhik, Tables of Integrals, Series and Prducts. Academic Press, 2007.
[100] B. P. Lathi and Z. Ding, Modern Digital and Analog Communication Systems., Oxford University Press, 2010.
[101] W. C. Jakes, Microwave Mobile Communications. New York: Wiley, 1974.
[102] A. E. Gamal and Y.-H. Kim, Network Information Theory. Cambridge University Press, 2011.
[103] D. Warrier and U. Madhow, “Spectrally efficient noncoherent communication,” IEEE Trans. Inform. Theory, vol. 48, pp. 651-668, Mar 2002.
[104] R. Knopp and H. Leib, “M-ary phase coding for the noncoherent AWGN channel,” IEEE Trans. Inform. Theory, vol. 40, no. 6, pp. 1968-1984, Nov. 1994.
[105] R. Y. Wei, “Noncoherent block-coded MPSK,” IEEE Trans. on Commun., vol. 53, no. 6, pp. 978-986, June 2005.
[106] R. Y. Wei and Y. M. Chen, “Further results on noncoherent block-coded MPSK,” IEEE Trans. on Commun., vol. 56, no. 10, pp. 1616-1625, Oct. 2008.
[107] R. Y. Wei, S. S. Gu and T. C. Sue, “Noncoherent block-coded TAPSK,” IEEE Trans. on Commun., vol. 57, no. 11, pp. 3195-3198, Nov. 2009.
[108] R. Y. Wei, T. S. Lin and S. S. Gu, “Noncoherent block-coded TAPSK and 16QAM using linear component codes,” IEEE Trans. on Commun., vol. 58, no. 9, pp. 2493-2498, Sep. 2010.
[109] Y. M. Chen, and Y. L. Ueng, “Noncoherent amplitude/phase modulated transmission schemes for Rayleigh block fading channels” IEEE Trans. on Commun., vol. 61, no. 1, pp. 217-227, Jan. 2013.
[110] R. Nuriyev and A. Anastasopoulos, “Capacity and coding for the block-independent noncoherent AWGN channel,” IEEE Trans. Inform. Theory, vol. 51, no. 3, pp. 866-883, Mar. 2005.
[111] R. Nuriyev and A. Anastasopoulos, “Pilot-symbol-assisted coded transmission over the block-noncoherent AWGN channel,” IEEE Trans. on Commun., vol. 51, no. 6, pp. 953-963, Jun. 2003.
[112] F. W. Sun and H. Leib, “Multiple-phase codes for detection without carrier phase reference,” IEEE Trans. Inform. Theory, vol. 44, no. 4, pp. 1477-1491, July 1998.
[113] R. Y. Wei, “Differential encoding by a look-up table for quadrature-amplitude modulation,” IEEE Trans. on Commun., vol. 59, no. 1, pp. 84-94, Jan. 2011.
[114] D. Divsalar and M. K. Simon, “Maximum-likelihood differential detection of uncoded and trellis coded amplitude phase modulation over AWGN and fading channels-Metrics and performance,” IEEE Trans. on Commun., vol. 42, no. 1, pp. 76-89, Sept. 1994
[115] Schroeder, Daniel (2000). An Introduction to Thermal Physics. United States: Addison Wesley Longman. pp. 20–21. ISBN 0-201-38027-7. |