博碩士論文 106523026 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:88 、訪客IP:3.144.2.61
姓名 王一融(I-Jung Wang)  查詢紙本館藏   畢業系所 通訊工程學系
論文名稱
(Real-Time Power Allocation on Non-Orthogonal Multiple Access Downlink)
相關論文
★ 運用SIFT特徵進行光學影像目標識別★ 語音關鍵詞辨識擷取系統
★ 適用於筆記型電腦之WiMAX天線研究★ 應用於凱氏天線X頻段之低雜訊放大器設計
★ 適用於802.11a/b/g WLAN USB dongle曲折型單極天線設計改良★ 應用於行動裝置上的雙頻(GPS/BT)天線
★ SDH設備單體潛伏性障礙效能分析與維運技術★ 無風扇嵌入式觸控液晶平板系統小型化之設計
★ 自動化RFID海關通關系統設計★ 發展軟體演算實現線性調頻連續波雷達測距系統之設計
★ 近場通訊之智慧倉儲管理★ 在Android 平台上實現NFC 室內定位
★ Android應用程式開發之電子化設備巡檢★ 鏈路預算估測預期台灣衛星通訊的發展
★ 在中上衰落通道中分集結合技術之二階統計特性★ 先進長程演進系統中載波聚合技術的初始同步
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 近年來,隨著行動通訊技術的演進,行動裝置使用者的人數愈來愈多,尤其是物聯網的加入,更增數倍,所需傳送的資料量也越來越大,因此在有限的頻譜下,最大化資料的傳送量,是目前通訊領域極其重要的一環。
現行的長期演進技術 (Long Term Evolution, LTE)下行鏈路採用的是正交分頻多重存取技術 (orthogonal frequency division multiple access, OFDMA),在對抗多路徑干擾時有較好的表現,並且透過循環前綴 (cyclic prefix, CP)降低符元間干擾(inter-symbol interference, ISI)和載波間干擾 (inter-carrier interference, ICI)。OFDMA是將每一個使用者的資料分配在不同載波上來傳送,但如此一來每個使用者皆使用固定的頻段來接收資料,降低頻譜的使用效率。
為了解決頻譜使用效率低的問題,在第五代行動通訊上,各界學者們持續尋找解決辦法,其中一項方案便是非正交多重存取技術 (non-orthogonal multiple access, NOMA),運用功率域的角度,使用者分別使用不同的功率來乘載,並疊加在一起傳送,如此一來,在同一頻段中即可同時傳送多個使用者資料,大大提升頻譜使用效率。然而在使用NOMA時,接收端必須考慮到消除干擾的問題,目前較常見的方法有連續消除干擾 (successive interference cancellation, SIC)和聯合偵測 (joint-detection),不管使用哪種方法都會增加接收端的運算複雜度且更加耗電,其中SIC對使用者的傳送功率由為敏感,假若使用者的功率相當,SIC就很難運作,正常的消除干擾。
因此本文提出即時功率分配演算法 (real-time power allocation, RTPA),來提升在使用者功率相當時的傳送品質,模擬結果顯示,在運用RTPA演算法後,可以在不變動系統通道容量的前提下,降低接收的錯誤率,改善SIC因為使用者功率差,所造成的位元錯誤率 (bit error rate, BER)提升。
摘要(英) For the past few years, mobile communication develops very fast. The more mobile devices are increasing, the more data are transmitted. Especially the Internet of Things, everything can access to the Internet. Therefore, under the limited spectrum, to maximize the base station throughput is now become the most important issue in the future.
Long Term Evolution downlink uses Orthogonal Frequency Division Multiple Access (OFDMA) to transmit signal to UEs, which brings some benefits. OFDMA has better performance to defense multipath interference. In the meantime, cyclic prefix can not only reduce inter-symbol interference but also inter-carrier interference. The data of every UE are transmitted by their own subcarrier from a base station. However, every single UE uses the fixed spectrum to receive signal. It makes the efficient of spectrum become lower.
To solve this problem, in the fifth-generation mobile communication, researchers are finding solutions. One of the solutions is Non-Orthogonal Multiple Access (NOMA). To transmit each UE’s signal, the base station uses different transmission power and add them together which method is also known as power domain. Hence, every UE’s data can be transmitted in the same spectrum at the same time. But with NOMA, receivers have to face interference cancellation problem. Currently, the common method to solve the problem are successive interference cancellation (SIC) and joint-detection. No matter which method you use, they always increase the computation complexity of receiver side and consume more electricity. SIC is very sensitive to transmission power. If the transmission power of each UE is almost equivalent, SIC cannot cancel interference completely.
In this paper, we propose a real-time power allocation (RTPA) algorithm to improve the transmission performance when UEs’ transmission power is almost equivalent. Simulation results show that after introduce RTPA algorithm, it can reduce error rate at receiver side and improve SIC performance without changing any system channel capacity.
關鍵字(中) ★ 非正交多重存取技術
★ 功率分配
★ 用戶分群
關鍵字(英) ★ Non-orthogonal mutiple access
★ Power allocation
★ User grouping
論文目次 摘要 i
Abstract ii
致謝 iv
目錄 v
圖目錄 vii
表目錄 viii
第一章 緒論 - 1 -
1.1 研究背景與動機 - 1 -
1.2 研究目的 - 2 -
1.3 論文大綱 - 3 -
第二章 非正交多重存取(NOMA)介紹 - 4 -
2.1 非正交多重存取介紹 - 4 -
2.2 NOMA傳送端 - 6 -
2.3 NOMA接收端 - 7 -
2.4 通道容量分析 - 8 -
第三章 即時功率分配演算法 - 11 -
3.1 無線通道模型 - 11 -
3.2 通道分析 - 14 -
3.3 最小均方誤差 (MMSE)等化器 - 15 -
3.4 分群及功率分配 - 16 -
3.5 Sum-rate計算 - 18 -
第四章 模擬結果與討論 - 20 -
4.1 傳統NOMA+SIC架構 - 22 -
4.2 導入即時功率分配演算法 - 23 -
4.2.1 RTPA-NOMA和傳統NOMA的sum-rate - 24 -
4.2.2 從使用者數看sum-rate - 27 -
4.2.3 從coherence time看bit error rate - 29 -
4.2.4 從使用者數看bit error rate - 37 -
4.2.5 模擬通道估測之誤差 - 41 -
第五章 結論 - 43 -
參考文獻 - 44 -
參考文獻 [1] 3GPP, "Technical Specification Group Services and System Aspects; Release 15 Description; Summary of Rel-15 Work Item (Release 15),"
[2] C. Yan, A. Harada, A. Benjebbour, Y. Lan, A. Li, and H. Jiang, "Receiver design for downlink non-orthogonal multiple access (NOMA)," in Proc. 2015 IEEE 81st Vehicular Technology Conference (VTC Spring), (Glasgow, UK), pp. 1-6, May 2015.
[3] A. Mohan, Non-orthogonal multiple access. 2017.
[4] A. Benjebbour, A. Li, K. Saito, Y. Saito, Y. Kishiyama, and T. Nakamura, "NOMA: From concept to standardization," in Proc. 2015 IEEE Conference on Standards for Communications and Networking (CSCN), pp. 18-23, Oct. 2015.
[5] A. Li, Y. Lan, X. Chen, and H. Jiang, "Non-orthogonal multiple access (NOMA) for future downlink radio access of 5G," China Communications, vol. 12, pp. 28-37, Dec. 2015.
[6] Z. Ding et al., "Application of non-orthogonal multiple access in LTE and 5G networks," IEEE Communications Magazine, vol. 55, pp. 185-191, Feb. 2017.
[7] Y. Saito, Y. Kishiyama, A. Benjebbour, T. Nakamura, A. Li, and K. Higuchi, "Non-orthogonal multiple access (NOMA) for cellular future radio access," in Proc. 2013 IEEE 77th Vehicular Technology Conference (VTC Spring), (Dresden, Germany), pp. 1-5, June 2013.
[8] A. Benjebbour, A. Li, Y. Kishiyama, H. Jiang, and T. Nakamura, "System-level performance of downlink NOMA combined with SU-MIMO for future LTE enhancements," in Proc. 2014 IEEE Globecom Workshops (GC Wkshps), (Austin, TX, USA), pp. 706-710, Dec. 2014.
[9] S. Chinnadurai, P. Selvaprabhu, and M. H. Lee, "A novel joint user pairing and dynamic power allocation scheme in MIMO-NOMA system," in Proc. 2017 International Conference on Information and Communication Technology Convergence (ICTC), (Jeju, South Korea), pp. 951-953, Oct. 2017.
[10] R. Caglar Kizilirmak, "Non-orthogonal multiple access (NOMA) for 5G networks," 2016.
[11] A. S. Marcano and H. L. Christiansen, "Impact of NOMA on network capacity dimensioning for 5G HetNets," IEEE Access, vol. 6, pp. 13587-13603, Feb. 2018.
[12] X. Su, H. Yu, W. Kim, C. Choi, and D. Choi, "Interference cancellation for non-orthogonal multiple access used in future wireless mobile networks," EURASIP Journal on Wireless Communications and Networking, vol. 2016, p. 231, Sept. 2016.
[13] M. R. Usman, A. Khan, M. A. Usman, and S. Y. Shin, "Joint non-orthogonal multiple access (NOMA) & Walsh-Hadamard transform: Enhancing the receiver performance," China Communications, vol. 15, pp. 160-177, Sept. 2018.
[14] T. Manglayev, R. C. Kizilirmak, and Y. H. Kho, "Optimum power allocation for non-orthogonal multiple access (NOMA)," in Proc. 2016 IEEE 10th International Conference on Application of Information and Communication Technologies (AICT), (Baku, Azerbaijan), pp. 1-4, Oct. 2016.
[15] S. Haykin, Communication system 4th edition. Wiley India Pvt. Limited, 2006.
[16] Z. Xiao, L. Zhu, J. Choi, P. Xia, and X. Xia, "Joint power Allocation and beamforming for non-orthogonal multiple access (NOMA) in 5G millimeter wave communications," IEEE Transactions on Wireless Communications, vol. 17, pp. 2961-2974, May 2018.
[17] L. Zhu, J. Zhang, Z. Xiao, X. Cao, and D. O. Wu, "Optimal user pairing for downlink non-orthogonal multiple access (NOMA)," IEEE Wireless Communications Letters, vol. 8, pp. 328-331, April 2019.
[18] S. Liu, C. Zhang, and G. Lyu, "User selection and power schedule for downlink non-orthogonal multiple access (NOMA) system," in Proc. 2015 IEEE International Conference on Communication Workshop (ICCW), (London, UK), pp. 2561-2565, June 2015.
[19] M. Patzold, U. Killat, F. Laue, and L. Yingchun, "On the statistical properties of deterministic simulation models for mobile fading channels," IEEE Transactions on Vehicular Technology, vol. 47, pp. 254-269, Feb 1998.
[20] Y. R. Zheng and X. Chengshan, "Improved models for the generation of multiple uncorrelated Rayleigh fading waveforms," IEEE Communications Letters, vol. 6, pp. 256-258, June 2002.
[21] W. C. Jakes, Microwave mobile communications. Wiley, 1974.
[22] A. Sorrentino, G. Ferrara, and M. Migliaccio, "On the coherence time control of a continuous dode stirred reverberating chamber," IEEE Transactions on Antennas and Propagation, vol. 57, pp. 3372-3374, Oct. 2009.
[23] T. S. Rappaport, Wireless Communications: Principles and Practice (2nd Edition). Prentice Hall, 2002.
[24] (2019, 6/10). Coherence time (communications systems). Available: https://en.wikipedia.org/wiki/Coherence_time_(communications_systems)
[25] C. Y. Chi, C. C. Feng, and C. H. Chen, Blind Equalization and System Identification: Batch Processing Algorithms, Performance and Applications. Springer, 2006.
[26] S. Haykin, Adaptive Filter Theory. Prentice Hall, 2002.
[27] M. M. El-Sayed, A. S. Ibrahim, and M. M. Khairy, "Power allocation strategies for non-orthogonal multiple access," in Proc. 2016 International Conference on Selected Topics in Mobile & Wireless Networking (MoWNeT), (Cairo, Egypt), pp. 1-6, April 2016.
[28] Z. Q. Al-Abbasi and D. K. C. So, "User-pairing based non-orthogonal multiple access (NOMA) system," in Proc. 2016 IEEE 83rd Vehicular Technology Conference (VTC Spring), (Nanjing, China), pp. 1-5, May 2016.
[29] N. Otao, Y. Kishiyama, and K. Higuchi, "Performance of non-orthogonal access with SIC in cellular downlink using proportional fair-based resource allocation," in Proc. 2012 International Symposium on Wireless Communication Systems (ISWCS), (Paris, France), pp. 476-480, Aug. 2012.
指導教授 林嘉慶(Jia-Chin Lin) 審核日期 2019-7-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明