參考文獻 |
[1] Pradeep K.Atrey,M.AnwarHossain,AbdulmotalebElSaddik,andMohanS.
Kankanhalli. Multimodalfusionformultimediaanalysis:asurvey. Multimedia Sys-
tems, 16(6):345–379,Nov2010.
[2] Gianni Barlacchi,MarcoDeNadai,RobertoLarcher,AntonioCasella,Cristiana
Chitic, GiovanniTorrisi,FabrizioAntonelli,AlessandroVespignani,AlexPentland,
and BrunoLepri.Amulti-sourcedatasetofurbanlifeinthecityofMilanandthe
ProvinceofTrentino. Scientific data, 2:150055,2015.
[3] Cisco VisualNetworkingIndexCisco.Globalmobiledatatrafficforecastupdate,
2016–2021. white paper, 2016.
[4] PauloCortez,MiguelRio,MiguelRocha,andPedroSousa.Multi-scaleInternet
trafficforecastingusingneuralnetworksandtimeseriesmethods. Expert Systems,
29(2):143–155, 2012.
[5] A. Damnjanovic,J.Montojo,YongbinWei,TingfangJi,TaoLuo,M.Vajapeyam,Tae-
sang Yoo,OsokSong,andD.Malladi.Asurveyon3GPPheterogeneousnetworks.
WirelessCommunications,IEEE, 18(3):10–21,June2011.
[6] DennyBritz.Recurrentneuralnetworkstutorial,part1–introductiontornns.
[7] JeffDonahue,LisaAnneHendricks,SergioGuadarrama,MarcusRohrbach,Sub-
hashini Venugopalan,KateSaenko,andTrevorDarrell.Long-termrecurrentconvo-
lutional networksforvisualrecognitionanddescription. CoRR, abs/1411.4389,2014.
[8] G.E. HintonandR.R.Salakhutdinov.Reducingthedimensionalityofdatawithneural
networks. Science (NewYork,N.Y.), 313:504–7,082006.
[9] C. Huang,C.Chiang,andQ.Li.Astudyofdeeplearningnetworksonmobiletraffic
forecasting. In 2017 IEEE28thAnnualInternationalSymposiumonPersonal,Indoor,
and MobileRadioCommunications(PIMRC), pages1–6,Oct2017.
[10] C. W.Huang,C.T.Chiang,andQ.Li.Astudyofdeeplearningnetworksonmobile
trafficforecasting.In 2017 IEEE28thAnnualInternationalSymposiumonPersonal,
Indoor,andMobileRadioCommunications(PIMRC), pages1–6,Oct2017.
[11] WenhaoHuang,GuojieSong,HaikunHong,andKunqingXie.Deeparchitecturefor
trafficflowprediction:Deepbeliefnetworkswithmultitasklearning. IEEE Transac-
tions onIntelligentTransportationSystems, 15(5):2191–2201,2014.
[12] WenweiJin,YoufangLin,ZhihaoWu,andHuaiyuWan.Spatio-temporalrecurrent
convolutionalnetworksforcitywideshort-termcrowdflowsprediction.In Proceed-
ings ofthe2NdInternationalConferenceonComputeandDataAnalysis, ICCDA
2018, pages28–35,NewYork,NY,USA,2018.ACM.
[13] Mingyu KimJuhanNamHonglakLeeAndrewY.NgJiquanNgiam,AdityaKhosla.
Multimodal deeplearning. Proc.28thInt.Conf.MachineLearning(ICML-11), 2011.
[14] Bahador Khaleghi,AlaaM.Khamis,FakhriKarray,andSaiedehN.Razavi.Multi-
sensor datafusion:Areviewofthestate-of-the-art. Information Fusion, 14:28–44,
2013.
[15] D. Lahat,T.Adali,andC.Jutten.Multimodaldatafusion:Anoverviewofmethods,
challenges, andprospects. ProceedingsoftheIEEE, 103(9):1449–1477,Sept2015.
[16] Y.Lecun,L.Bottou,Y.Bengio,andP.Haffner.Gradient-basedlearningappliedto
document recognition. ProceedingsoftheIEEE, 86(11):2278–2324,Nov1998.
[17] YannLeCun,BernhardEBoser,JohnSDenker,DonnieHenderson,RichardE
Howard,WayneEHubbard,andLawrenceDJackel.Handwrittendigitrecogni-
tion withaback-propagationnetwork.In Advances inneuralinformationprocessing
systems, pages396–404,1990.
[18] LISA lab.Convolutionalneuralnetworks(lenet).
[19] Jonathan Masci,MichaelM.Bronstein,AlexanderM.Bronstein,andJ¨urgenSchmid-
huber.Multimodalsimilarity-preservinghashing. CoRR, abs/1207.1522,2012.
[20] TiagoPradoOliveira,JamilSalemBarbar,andAlexsandroSantosSoares.Computer
networktrafficprediction:acomparisonbetweentraditionalanddeeplearningneural
networks. International JournalofBigDataIntelligence, 3(1):28–37,2016.
[21] SoujanyaPoria,ErikCambria,andAlexanderF.Gelbukh.Deepconvolutionalneural
networktextualfeaturesandmultiplekernellearningforutterance-levelmultimodal
sentiment analysis.In EMNLP, 2015.
[22] D. RamachandramandG.W.Taylor.Deepmultimodallearning:Asurveyonrecent
advancesandtrends. IEEE SignalProcessingMagazine, 34(6):96–108,Nov2017.
[23] Nitish SrivastavaandRuslanSalakhutdinov.Multimodallearningwithdeepboltz-
mann machines. JournalofMachineLearningResearch, 15:2949–2980,2014.
[24] D. Wang,P.Cui,M.Ou,andW.Zhu.Learningcompacthashcodesformultimodal
representations usingorthogonaldeepstructure. IEEE TransactionsonMultimedia,
17(9):1404–1416, Sep.2015.
[25] D. Wu,L.Pigou,P.Kindermans,N.D.Le,L.Shao,J.Dambre,andJ.Odobez.
Deep dynamicneuralnetworksformultimodalgesturesegmentationandrecognition.
IEEE TransactionsonPatternAnalysisandMachineIntelligence, 38(8):1583–1597,
Aug 2016.
[26] D. Wu,L.Pigou,P.J.Kindermans,N.D.H.Le,L.Shao,J.Dambre,andJ.M.
Odobez. Deepdynamicneuralnetworksformultimodalgesturesegmentationand
recognition. IEEE TransactionsonPatternAnalysisandMachineIntelligence,
38(8):1583–1597, Aug2016.
[27] Jing Xu,JiangWang,YuanpingZhu,YangYang,XiaojinZheng,ShuangdieWang,
LigangLiu,KariHorneman,andYongTeng.Cooperativedistributedoptimizationfor
the hyper-densesmallcelldeployment. IEEE CommunicationsMagazine, 52(5):61–
67, 2014.
[28] C. Zhang,H.Zhang,D.Yuan,andM.Zhang.Citywidecellulartrafficprediction
based ondenselyconnectedconvolutionalneuralnetworks. IEEE Communications
Letters, 22(8):1656–1659,Aug2018.
[29] Junbo Zhang,YuZheng,andDekangQi.Deepspatio-temporalresidualnetworksfor
citywide crowdflowsprediction.In ProceedingsoftheThirty-FirstAAAIConference
on ArtificialIntelligence(AAAI-17), pages1655–1661,2017.
38 |