博碩士論文 106523019 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:44 、訪客IP:18.222.163.31
姓名 林庭瑞(Ting-Jui Lin)  查詢紙本館藏   畢業系所 通訊工程學系
論文名稱 基於深度神經網路之綠能無線通訊系統功率控制研究
(Deep Neural Network-based Power Control for Green Wireless Communications)
相關論文
★ 基於干擾對齊方法於多用戶多天線下之聯合預編碼器及解碼器設計★ 應用壓縮感測技術於正交分頻多工系統之稀疏多路徑通道追蹤與通道估計方法
★ 應用於行動LTE 上鏈SC-FDMA 系統之通道等化與資源分配演算法★ 以因子圖為基礎之感知無線電系統稀疏頻譜偵測
★ Sparse Spectrum Detection with Sub-blocks Partition for Cognitive Radio Systems★ 中繼網路於多路徑通道環境下基於領航信號的通道估測方法研究
★ 基於代價賽局在裝置對裝置間通訊下之資源分配與使用者劃分★ 應用於多用戶雙向中繼網路之聯合預編碼器及訊號對齊與天線選擇研究
★ 多用戶波束成型和機會式排程於透明階層式蜂巢式系統★ 應用於能量採集中繼網路之最佳傳輸策略研究設計及模擬
★ 感知無線電中繼網路下使用能量採集的傳輸策略之設計與模擬★ 以綠能為觀點的感知無線電下最佳傳輸策略的設計與模擬
★ 二使用者於能量採集網路架構之合作式傳輸策略設計及模擬★ 基於Q-Learning之雙向能量採集通訊傳輸方法設計與模擬
★ 多輸入多輸出下同時訊息及能量傳輸系統之設計與模擬★ 附無線充電裝置間通訊於蜂巢式系統之設計與模擬
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 近年來人工智慧與物聯網(AIoT)在無線通訊應用蓬勃發展,無線通訊所造成的能源消耗及電量需求更是不可忽視,而能量獵取技術被提出此解決有限電池電量問題。為了最大化系統通道容量,傳統的凸優化方法受電池容量和能量獵取時間因果性限制必須假設未來所有時刻的能量獵取及通道增益等狀態資訊是完美已知才能實現傳輸功率控制,這在實際情況下難以達成且具有高計算複雜度。因此本論文提出深度神經網路(Deep Neural Network, DNN)學習過去能量獵取的傳輸模式來預測未來功率控制值,所提方法不需知道未來能量獵取及通道增益等狀態資訊,且有效降低複雜度以達到實際即時的綠能無線通訊應用。
在本篇論文中,具體地提出基於深度神經網路的功率控制方法,用於單用戶及多用戶綠能無線通訊系統之功率控制以最大化系統通道容量。在單用戶環境下,使用凸優化(Convex optimization)及歷年能量獵取資料產生最佳功率控制值,再讓多層感知器(Multilayer perceptron, MLP)學習其輸入/輸出的關係。在多用戶環境中,吾人研究集中式與分散式的功率控制技術,主要區別在於後者不需取得其他用戶的資訊。為了讓多層感知器進行學習,分別提出加權和最小均方誤差(Weighted-sum MMSE, WMMSE)和遞迴方向性注水演算法(Iterative Directional Water-filling, IDWF)產生參考功率控制值。模擬結果顯示本論文提出的方法不僅符合實際應用還能大幅降低計算複雜度並且在單用戶及多用戶應用上都能近似於參考功率控制值的系統通道容量。
摘要(英) In recent years, the artificial intelligence and the Internet of Things have been widely developed in wireless communication applications. The increasing demand on energy consumption in wireless communications has stimulated the rapid development of energy harvesting technology to solve the problem of limited battery power at wireless nodes. The convex optimization is a common approach to control transmission power over a future finite time horizon for achieving the maximum system throughput. It, however, requires non-causal perfect knowledge of energy harvesting patterns and channel gains over the power control duration due to the battery storage and the energy causality constraints, resulting in high complexity and impractical in real applications. To overcome this problem, in this thesis, deep neural networks (DNNs), along with the use of past energy harvesting patterns, are proposed to predict the future power control values, which can effectively reduce the computation complexity for real-time applications.
Specifically, the DNN-based power control schemes are proposed for maximizing the system throughput in two scenarios of energy harvesting communications: single-user and multi-user setups. In the single-user scenario, the convex optimization is utilized to generate the optimal power control values based on the historic energy harvesting data, and the results are later used in the multilayer perceptron (MLP) to learn its input/output relationships for power control prediction. In the multi-user scenario, centralized and distributed MLP-based power control schemes are investigated, and the main difference between them lies that the former scheme requires the past energy harvesting conditions and channel gains of all users, while each user only requires the past energy harvesting conditions, channel gains and interference power values related to itself in the later scheme. For the learning of MLPs in the multi-user scenario, a weighted-sum minimum mean-square-error (MMSE) approach and an iterative directional water-filling approach are respectively proposed to generate the reference power control solutions in the centralized and distributed designs. The simulation results show that the proposed method can greatly reduce the computational complexity and approach the system throughput of the reference solutions very well in both single-user and multi-user application.
關鍵字(中) ★ 能量獵取
★ 凸優化
★ 深度神經網路
★ 多層感知器
★ 加權和最小均方誤差
★ 遞迴方向性注水
關鍵字(英) ★ Energy harvesting
★ Convex optimization
★ Deep Neural Networks
★ Multilayer perceptron
★ Weighted-sum MMSE
★ Iterative Directional Water-filling
論文目次 摘要 i
Abstract ii
致謝 iv
目錄 v
圖目錄 vii
表目錄 viii
符號說明 ix
第一章 緒論 1
1-1 研究背景及動機 1
1-2 文獻探討-能量獵取功能的無線通訊系統 3
1-3 文獻探討-深度神經網路 4
第二章 研究理論介紹 5
2-1 能量獵取(Energy harvesting) 5
2-2 通道容量(Channel capacity) 6
2-3 凸優化(Convex optimization) 6
2-4 深度神經網路-多層感知器(Multilayer perceptron) 6
2-5 集中式網路(Centralized network) 8
2-6 分散式網路(Distributed network) 8
第三章 單用戶能量獵取無線通訊系統架構 9
3-1 太陽能能量獵取大數據 9
3-2 單用戶系統模型 10
3-3 單用戶通道容量最佳化問題 11
3-4 基於凸優化單用戶功率控制 11
3-5 多層感知器之單用戶功率控制 15
第四章 多用戶能量獵取無線通訊系統架構 22
4-1 多用戶系統模型 22
4-2 多用戶通道容量最佳化問題 23
4-3 加權和最小均方誤差演算法 24
4-4 多層感知器之多用戶集中式功率控制 26
4-5 遞迴方向性注水演算法 29
4-6 多層感知器之多用戶分散式功率控制 31
第五章 模擬結果 34
5-1 單用戶凸優化及多層感知器模擬結果 37
5-2 多用戶凸優化及多層感知器模擬結果 40
第六章 結論 46
附錄A He初始化 47
附錄B 加權和均方誤差配方過程 48
附錄C 加權和最小均方誤差等效證明 49
參考文獻 51
參考文獻 [1]W. Vereecken, W. Van Heddeghem, D. Colle, M. Pickavet, and P. Demeester, “Over ICT footprint and green communication technologies,” in Proc. IEEE ISCCSP’ 10, pp. 1-6, March 2010.
[2]A. Kumar, K. Singh, and D. Bhattacharya, “Green communication and wireless networking,” in Proc. ICGCE’ 13, pp. 49-52, Dec. 2013.
[3]I. U. Ramirez, and N. A. B. Tello, “A Survey of Challenges in Green Wireless Communications Research,” in Proc. ICMEAE’ 14, pp. 197-200, Nov. 2014.
[4]P. Gandotra, and R. K. Jha, “Next generation cellular networks and green communication,” in Proc COMSNETS’ 18, pp. 522-524, Jan. 2018.
[5]M. Grant and S. Boyd, “CVX: Matlab software for disciplined convex programming, version 2.1,” [Online]. Available: http://cvxr.com/cvx, Dec. 2018.
[6]O. Ozel, K. Tutuncuoglu, J. Yang, S. Ulukus, and A. Yener, “Transmission with energy harvesting nodes in fading wireless channels: optimal policies,” IEEE J. Sel. Areas Commun., vol. 29, no. 8, pp. 1732-1743, Sept. 2011.
[7]M.-L. Ku, Y. Chen and K. J. R. Liu, “Data-driven stochastic models and policies for energy harvesting sensor communications,” to appear in IEEE J. Sel. Areas Commun.: Wireless Commun. Powered by Energy Harvesting and Wireless Energy Transfer, Dec. 2014.
[8]M. Tacca, P. Monti, and A. Fumagalli, “Cooperative and reliable ARQ protocols for energy harvesting wireless sensor nodes,” IEEE Trans. Wireless Commun., vol. 6, no. 7, pp. 2519-2529, July 2007.
[9]S. Reddy and C. R. Murthy, “Profile-based load scheduling in wireless energy harvesting sensors for data rate maximization,” in Proc. IEEE ICC’10, pp. 1-5, 2010.
[10]N. Michelusi, K. Stamatiou, and M. Zorzi, “Transmission policies for energy harvesting sensors with time-correlated energy supply,” IEEE Trans. Commun., vol. 61, no. 7, pp. 2988-3001, July 2013.
[11]B. Medepally and N. B. Mehta, “Voluntary Energy Harvesting Relays and Selection in Cooperative Wireless Networks,” IEEE Trans. Wireless commun., vol. 9, no. 11, pp. 3543-3553, Nov. 2010.
[12]C. K. Ho, P. D. Khoa and P. C. Ming, “Markovian Models for Harvested Energy in Wireless Communications,” in Proc. IEEE ICCS’10, pp. 311-315, Nov. 2010.
[13]Hsin-Hung Tsai, “Design and simulation of cooperative transmission policies for two-user energy harvesting networks,” Master Thesis, National Central University, June. 2015.
[14]M. Morshedizadeh, M. Kordestani, R. Carriveau, D.S.-K. Ting, and M.Saif, “Power production prediction of wind turbines using a fusion of MLP and ANFIS network,” IET Renewable Power Generation, vol. 12, no. 9, pp. 1025-1033, June. 2018.
[15]M. Adel, and P. A. Massi “A 24-h forecast of solar irradiance using artificial neural network: Application for performance prediction of a grid-connected PV plant at Trieste, Italy,” Solar Energy, vol. 84, no. 5, pp. 807-821, May. 2010.
[16]A.Gensler, J. Henze, B.Sick, and N. Raabe”Deep Learning for solar power forecasting – An approach using AutoEncoder and LSTM Neural Networks,” in Proc. IEEE SMC’16, pp. 2858-2865, Oct. 2016.
[17]H. Ye, G. Y. Li, and B.-H. Juang, “Power of Learning for Channel Estimation and Signal Detection in OFDM Systems,” IEEE Wireless Commun. Lett. , vol. 7, no. 1, pp. 114-117, Sept. 2017.
[18]W. Xia, G. Zheng, Y. Zhu, J. Zhang, J. Wang, and A. P. Petropulu, “A Deep Learning Framework for Optimization of MISO Downlink Beamforming,” arXiv: 1901.00354v1, pp. 1-12, Jan. 2019.
[19]J.Kim, J.Park, J. Noh, and S. Cho, “Completely Distributed Power Allocation using Deep Neural Network for Device to Device communication Underlaying LTE,” arXiv: 1802.02736v2, pp. 1-12, Feb. 2018.
[20]H. Sun, X. Chen, Q. Shi, M. Hong, X. Fu, and N. D. Sidiropoulos, “Learning to Optimize: Training Deep Neural Networks for Interference Management,” IEEE Trans. Signal Process., vol. 66, no. 20, pp. 5438-5453, Oct. 2018.
[21]B. Atwood, B. Warneke, and K. S. J. Pister, “Smart Dust mote forerunners,” in Proc. IEEE ICMS’ 01, pp. 357–360, Jan. 2001.
[22]K. Y. Huang, L. C. Shen, K. J. Chen, and M. C. Huang, “Multilayer perceptron with genetic algorithm for well log data inversion,” in Proc. IEEE IGARSS, pp. 21-26, July. 2013.
[23]NREL. Solar radiation resource information, Golden, CO, USA. [Online]. Available: http://www.nrel.gov/rredc/
[24]R. H. Clarke, “A statistical theory of mobile-radio reception,” Bell Syst. Tech. J., vol. 47, no. 6, pp.957-1000, Aug. 1968.
[25]K. He, X. Zhang, S. Ren, and J. Sun, “Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification,” arXiv: 1502.01852v1, pp. 1-11, Feb. 2015.
[26]S. Ioffe, and C. Szegedy, “Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift,” arXiv: 1502.03167v3, pp. 1-11, Mar. 2015.
[27]D. Mishkin, and J. Matas, “All you need is a good init,” arXiv: 1511.06422v7, pp. 1-13, Feb. 2016.
[28]Andrej Karpathy’s blog, “Hacker’s guide to Neural Networks,” [Online]. Available: http://karpathy.github.io/neuralnets/.
[29]Frederik Kratzert’s blog, “Understanding the backward pass through Batch Normalization Layer,” [Online]. Available: http://kratzert.github.io/2016/02/12/understanding-the-gradient-flow-through-the-batch-normalization-layer.html.
[30]D. P. Kingma, and J. Ba, “Adam: A Method for Stochastic Optimization,” arXiv: 1412.6980v9, pp. 1-15, Jan. 2017.
[31]D. Guo, S. Shamai, and S.Verdu, “Mutual information and minimum mean-square error in Gaussian channels,” IEEE Trans. Inf. Theory, vol. 51, no. 4, pp. 1261-1282, Apr. 2005.
[32]K. Singh, M.-L. Ku, J.-C. Lin, and T. Ratnarajah, “Toward Optimal Power Control and Transfer for Energy Harvesting Amplify-and-Forward Relay Networks,” IEEE Trans. Wireless Commun., vol. 17, no. 8, pp. 4971-4986, May. 2018.
[33]G. Scutari, D. P. Palomar, and B. Sergio, “Simultaneous iterative water-filling for Gaussian frequency-selective interference channels,” in Proc. IEEE ISIT, pp. 600-604, Dec. 2006.
指導教授 古孟霖(Meng-Lin Ku) 審核日期 2019-8-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明