博碩士論文 106523052 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:84 、訪客IP:3.147.86.216
姓名 陳毓琇(Yu-Hsiu Chen)  查詢紙本館藏   畢業系所 通訊工程學系
論文名稱 運用3D環境模型之視覺定位方法
(Visual Positioning with 3D Environment Model)
相關論文
★ 基於馬賽克特性之低失真實體電路佈局保密技術★ 多路徑傳輸控制協定下從無線區域網路到行動網路之無縫換手
★ 感知網路下具預算限制之異質性子頻段分配★ 下行服務品質排程在多天線傳輸環境下的效能評估
★ 多路徑傳輸控制協定下之整合型壅塞及路徑控制★ Opportunistic Scheduling for Multicast over Wireless Networks
★ 適用多用戶多輸出輸入系統之低複雜度比例公平性排程設計★ 利用混合式天線分配之 LTE 異質網路 UE 與 MIMO 模式選擇
★ 基於有限預算標價式拍賣之異質性頻譜分配方法★ 適用於 MTC 裝置 ID 共享情境之排程式分群方法
★ Efficient Two-Way Vertical Handover with Multipath TCP★ 多路徑傳輸控制協定下可亂序傳輸之壅塞及排程控制
★ 移動網路下適用於閘道重置之群體換手機制★ 使用率能小型基地台之拍賣是行動數據分流方法
★ 高速鐵路環境下之通道預測暨比例公平性排程設計★ 用於行動網路效能評估之混合式物聯網流量產生器
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 室內定位至今已發展有一段時間,有很多相關的研究像是場景辨識
以及導航,現有的深度學習定位方法需要大量附有正確相機位置的圖
像,這篇論文主要利用同時定位與建立地圖(SLAM)算法所生成的三
維地圖解決定位問題,我們使用投影方法從3D地圖生成訓練數據,此方
法可以產生在3D地圖中任何地方的圖像,並且帶有準確的位置訊息,我
們也結合了B-CNN[12]所形成的縮放地圖和深度學習解來決定位問題。
摘要(英) Indoor localization has been developed for many years. There are many
related works like scene recognition and navigation. Existing deep learning
positioning methods require a large number of images with the correct camera position. This paper mainly solves the positioning problem by using the
3D map produced from simultaneous localization and mapping (SLAM) algorithm. In our positioning work, we use the projection method to produce
training data from the 3D map. This method can produce any place’s image
in the 3D map included accurate position information. We also combined BCNN [12] to reach a ”zooming map” and deep learning to solve the positioning
problem.
關鍵字(中) ★ 定位
★ 同時定位與建圖
★ 場景識別
★ 卷積神經網絡
關鍵字(英) ★ Localization
★ SLAM
★ Place recognition
★ Convolution Neural Network
論文目次 Table of Contents
1 Introduction 1
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.3 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.4 Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2 Background and Related Work 3
2.0.1 Sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.0.2 Visual Odometry and Add Key Frame . . . . . . . . . . . . . . . . 5
2.0.3 Loop Closure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.0.4 Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.0.5 Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1 Visual Positioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3 Branch-Based Classification as Positioning 11
3.1 Design principle and architecture . . . . . . . . . . . . . . . . . . . . . . . 11
3.2 Projection Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.3 Convolution Neural Network Structure . . . . . . . . . . . . . . . . . . . . 14
3.3.1 Six Different Cases with VGG16 . . . . . . . . . . . . . . . . . . 15
3.3.2 Six Different Cases with Branch Convolution Neural Network . . . 16
4 Implementation and Performance Evaluation 20
4.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.2 Grid Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.2.1 Grids on the 3D Map . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.2.2 Grids with B-CNN Structure . . . . . . . . . . . . . . . . . . . . . 22
4.3 Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.4 Training Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.4.1 Open 3D Map Training Result . . . . . . . . . . . . . . . . . . . . 25
4.4.2 Engineering Building 3D Map Training Result . . . . . . . . . . . 26
4.4.3 Validation Accuracy Result . . . . . . . . . . . . . . . . . . . . . . 28
4.5 Testing Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.5.1 Presetting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.5.2 Testing Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.5.3 Positive Samples and Negative Samples of Testing . . . . . . . . . 31
4.5.4 Branch Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5 Conclusion and Future Work 34
5.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Bibliography 35
參考文獻 Bibliography
[1] Multi session mapping with rtab map tango.
https://github.com/introlab/rtabmap/wiki/Multi-Session-Mapping-with-RTABMap-Tango.
[2] S. S. Ali, A. Hammad, and A. S. Tag Eldien. Mc2ps: Cloud-based 3-d place recognition using map segmentation coordinates points. IEEE Communications Letters,
22(8):1560–1563, Aug 2018.
[3] Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we ready for autonomous
driving? the kitti vision benchmark suite. In Conference on Computer Vision and
Pattern Recognition (CVPR), 2012.
[4] L. He, X. Wang, and H. Zhang. M2dp: A novel 3d point cloud descriptor and its
application in loop closure detection. In 2016 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pages 231–237, Oct 2016.
[5] Mathieu Labbe and Franc¸ois Michaud. Rtab-map as an open-source lidar and visual ´
simultaneous localization and mapping library for large-scale and long-term online
operation: LabbE and michaud. ´ Journal of Field Robotics, 36, 10 2018.
[6] Kin Leong Ho and Paul Newman. Loop closure detection in slam by combining visual
and spatial appearance. Robotics and Autonomous Systems, 54:740–749, 09 2006.
[7] E. Rosten, R. Porter, and T. Drummond. Faster and better: A machine learning approach to corner detection. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 32(1):105–119, Jan 2010.
[8] J. Shotton, B. Glocker, C. Zach, S. Izadi, A. Criminisi, and A. Fitzgibbon. Scene
coordinate regression forests for camera relocalization in rgb-d images. In 2013 IEEE
Conference on Computer Vision and Pattern Recognition, pages 2930–2937, June
2013.
35
[9] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for largescale image recognition. CoRR, abs/1409.1556, 2015.
[10] F. Walch, C. Hazirbas, L. Leal-Taixe, T. Sattler, S. Hilsenbeck, and D. Cremers. ´
Image-based localization using lstms for structured feature correlation. In 2017 IEEE
International Conference on Computer Vision (ICCV), pages 627–637, Oct 2017.
[11] Zhengyou Zhang. Determining the epipolar geometry and its uncertainty: A review.
International Journal of Computer Vision, 27(2):161–195, 1998.
[12] Xinqi Zhu and Michael Bain. B-CNN: Branch Convolutional Neural Network for
Hierarchical Classification. arXiv e-prints, page arXiv:1709.09890, Sep 2017.
指導教授 黃志煒(Chih-Wei Huang) 審核日期 2019-8-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明