博碩士論文 106522071 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:47 、訪客IP:3.144.104.118
姓名 黎桂如(Gui-Ru Li)  查詢紙本館藏   畢業系所 資訊工程學系
論文名稱 應用歌手辨識及角色標注於輿情意見目標分析之研究
(Singer Recognition and Semantic Role Labeling for Opinion Target Extraction from Social Network)
相關論文
★ 行程邀約郵件的辨識與不規則時間擷取之研究★ NCUFree校園無線網路平台設計及應用服務開發
★ 網際網路半結構性資料擷取系統之設計與實作★ 非簡單瀏覽路徑之探勘與應用
★ 遞增資料關聯式規則探勘之改進★ 應用卡方獨立性檢定於關連式分類問題
★ 中文資料擷取系統之設計與研究★ 非數值型資料視覺化與兼具主客觀的分群
★ 關聯性字組在文件摘要上的探討★ 淨化網頁:網頁區塊化以及資料區域擷取
★ 問題答覆系統使用語句分類排序方式之設計與研究★ 時序資料庫中緊密頻繁連續事件型樣之有效探勘
★ 星狀座標之軸排列於群聚視覺化之應用★ 由瀏覽歷程自動產生網頁抓取程式之研究
★ 動態網頁之樣版與資料分析研究★ 同性質網頁資料整合之自動化研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 網路聲量偵測是在市場調查時常使用的手法之一,常見的偵測方法為將某事物被提及的次數作為熱門的指標。然而,只利用提及次數作為網路聲量是否真的足夠;有可能該子句真正的意見目標並非被提及的人物,因此本篇論文希望從社群網路的資料中找出意見目標。由於社群網路上的口語敘述並非正規的表達方式,這個問題導致模型在擷取意見目標時充滿挑戰性。
為了應對上述問題與挑戰,本研究使用深度學習模型架構進行中文歌手辨識(Singer Name Recognition, NER)和語意角色標記(Semantic Role Labeling, SRL),並透過自定義規則對子句進行意見目標偵測(Opinion Target Detection, OTD)。我們使用深度學習模型作為歌手辨識模型,並且比較Word2Vec字元嵌入模型以及BERT嵌入模型對效能之影響。在SRL任務中,我們參考Zhou等人[38]使用了額外的特徵以及Zhang等人[37]的高速網路架構來進行模型建立與訓練,希望效能可以有所提升。最後在OTD任務中,我們設計了自定義規則來合併NER實驗結果與SRL實驗結果,作為意見目標偵測的方法。
本研究使用的資料為利用客製化爬蟲程式從社群網站上擷取之文章作為訓練資料,測試資料同樣從社群網站上隨機挑選文章,作為基準效能以評估模型之效能。實驗結果顯示,我們的歌手辨識模型在擷取未知歌手效能可達44%的F1,在判斷子句中的語意角色時其F1可以達到71%的效能,在OTD任務的辨識精準度(Precision)則可以達到73%的效能。
摘要(英) Social network is a good resource to collect public opinions considering the diversity and variety in fashion, especially user generated content (UGC). UGC is defined as any type of content that created by users which could be pictures, videos, texts, comment, etc. Extracting the opinions from UGC can be the base of commercial policy, so how to extract the opinions correctly is an important problem. A common method is to regard mention times of entities as important indicator of network volume. There are two problems about the network volume: Are the opinions really talking about the target entities? Or the amount of opinions is enough for network volume analysis?
There are several features about UGC, the various written format of entities and the fragmentary structure of sentences. The former means there may have nickname or punctuations in the entities and may drop the performance of NER. The latter means users write the sentences but omit part of words which may drop the performance of SRL. These problems of NER and SRL will also drop the performance of opinion target detection. Therefore, a great challenge is how to recognize entities and semantic role in large UGC corpora.
In this study, we combine Named Entity Recognition (NER) and Semantic Role Labeling (SRL) to detect the opinion target (OTD) from UGC. In NER task, we compare the performance between CRF++ and neuron network models. In SRL task, we use highway connection and additional features to improve the performance. Finally, we design the rule to combined the result of NER and SRL for OTD task. The result show that our NER model gets 44% F1 on out-of-vocabulary entities extraction. On SRL task and OTD task, we get 71% F1 and 73% precision respectively.
關鍵字(中) ★ 深度學習
★ 命名實體辨識
★ 語意角色標記
★ 意見目標偵測
關鍵字(英) ★ Deep Learning
★ Named Entity Recognition
★ Semantic Role Labeling
★ Opinion Target Detection
論文目次 摘要 i
Abstract ii
目錄 iii
圖目錄 iv
表目錄 v
一、 簡介 1
二、 歌手命名實體辨識 5
2.1 相關研究 5
2.2 DS4NER 11
2.3 NER模型架構 12
2.4 實驗與系統效能 18
2.4.1 資料分析與資料集 18
2.4.2 標記策略 20
2.4.3 Performance on manual test dataset 21
2.4.4 Performance on AutoLabel test dataset 22
2.4.5 模型效能評估 23
2.5 小結 24
三、 語義角色標記(Semantic Role Labeling) 25
3.1 相關研究 25
3.2 SRL系統架構 27
3.2.1 資料準備 28
3.2.2 自然語言處理 29
3.2.3 高速雙向長短期記憶模型(Highway Bidirectional Long-Short Term Memory) 30
3.3 實驗與系統效能 34
3.3.1 評估方法 34
3.3.2 標記策略與模型評估 34
3.3.3 因子分析與結果討論 38
3.4 小結 39
四、 意見目標偵測(Opinion Target Detection) 40
4.1 相關研究 40
4.2 SVO規則 41
4.3 資料集和實驗 41
五、 貢獻與結論 44
參考文獻 45 
參考文獻 [1] https://zh.wikipedia.org/wiki/语义角色标注
[2] https://zh.wikipedia.org/wiki/謂語
[3] https://zhuanlan.zhihu.com/p/48508221
[4] https://blog.csdn.net/mingzai624/article/details/78061506
[5] http://treebank.sinica.edu.tw/
[6] http://ltp.ai/
[7] https://github.com/fxsjy/jieba
[8] https://propbank.github.io/
[9] Bahdanau D., Cho K., Bengio Y.: Neural machine translation by jointly learning to align and translate. The Third International Conference on Learning Representations (2015)
[10] Chang, C, H., Chang., C, H.: Multi-Stack Convolution with Gating Mechanism for Chinese Named Entity Recognition (2018)
[11] Chou, C, L., Chang, C, H.: Named entity extraction via automatic labeling and tri-training: comparison of selection methods. Information Retrieval Technology. AIRS 2014. Lecture Notes in Computer Science, vol 8870. Springer, Cham (2014)
[12] Chung, J., Gulcehre, C., Cho, K., Bengio, Y.: Empirical evaluation of gated recurrent neural networks on sequence modeling. arXiv preprint arXiv:1412.3555 (2014)
[13] Collobert, R., Weston, J., Bottou, L., Karlen, M., Kavukcuoglu, K., Kuksa, P.: “Natural Language Processing (Almost) from Scratch”. Journal of Machine Learning Research, pp.2493-2537 (2011)
[14] CRF++: Yet Another CRF toolkit: http://crfpp.sourceforge.net/
[15] Devlin, J., Chang, M, W., Lee, K., Toutanova, K.: BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. arXiv preprint arXiv:1810.04805 (2018)
[16] Dauphin, Y, N., Fan, A., Auli, M., Grangier, D.: Language modeling with gated convolutional networks. arXiv preprint arXiv: 1612.08083 (2016)
[17] Gal, Y., Ghahramani, Z.: A theoretically grounded application of dropout in recurrent neural networks. Thirtieth Conference on Neural Information Processing Systems (2016)
[18] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. Proceedings of the IEEE conference on computer vision and pattern recognition (2016)
[19] He, L., Lee, K., Levy, O., Zettlemoyer, L.: Jointly predicting predicates and arguments in neural semantic role labeling. In The 56th Annual Meeting of the Association for Computational Linguistics (2018)
[20] Huang, Z., Xu, W., Yu, K.: Bidirectional LSTM-CRF Models for Sequence Tagging. arXiv Preprint.arXiv: 1508.01991 (2015)
[21] He, L., Lee, K., Lewis, M., Zettlemoyer, L. 2017. Deep semantic role labeling: What works and what’s next. In The 55th Annual Meeting of the Association for Computational Linguistics (2017)
[22] Hochreiter, S., Schmidhuber, J.: Long Short-Term Memory. In Neural Computation 9(8):1735-80 (1997)
[23] Kim, S, M., Hovy, E.: Extracting opinions, opinion holders, and topics expressed in online news media text. Proceedings of the Workshop on Sentiment and Subjectivity in Text (2006)
[24] Lafferty, J., Mccallum, A., Pereira, F, C, N.: Conditional random fields: Probabilistic models for segmenting and labeling sequence data. Proceedings of the 18th International Conference on Machine Learning (2011)
[25] Lee, K., He, L., Lewis, M., Zettlemoyer, L.: End-to-end neural coreference resolution. In 2018 Conference on Empirical Methods in Natural Language Processing (2018)
[26] Ma X, Hovy E. End-to-End Sequence Labeling via Bi-directional LSTM-CNNs-CRF. arXiv Preprint. arXiv: 1603.01354 (2016)
[27] McCallum, A., Freitag, D., Pereira, F.: Maximum Entropy Markov Models for Information Extraction and Segmentation. The Seventeenth International Conference on Machine Learning (2000)
[28] Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 (2013)
[29] Mnih, V., Heess, N., Graves, A., Kavukcuoglu, K.: Recurrent Models of Visual Attention. Advances in Neural Information Processing Systems 27 (2014)
[30] Punyakanok, V., Roth, D., Yih, W, T.: The importance of syntactic parsing and inference in semantic role labeling. Computational Linguistics (2008)
[31] Rabiner, L, R.: A Tutorial on Hidden Markov Models and Selected Applications in Speech Recognition. Proceedings of the IEEE, vol. 77, No. 2 (1989)
[32] Srivastava, R, K., Greff, K., Schmidhuber, J.: Highway Networks. International Conference on Machine Learning Deep Learning workshop (2015)
[33] Srivastava, R, K., Greff, K., Schmidhuber, J.: Training very deep networks. In Advances in neural information processing systems (2015)
[34] Vaswani, A., Shazeer, M., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A, N., Kaiser, K., Polosukhin, I.: Attention Is All You Need. arXiv preprint arXiv:1706.03762 (2017)
[35] Wang, J, H., Ye, T, W.: Microblog sentiment analysis based on opinion target modifying (2013)
[36] Yao, H., Li, M., Cheng, J.: Extraction of Chinese "Opinion target - Opinion word" Pairs Based on Part-of-speech Rules and Semantic Dependency Parsing. Proceedings of the 2nd International Conference on Business and Information Management, pages 11-14 (2018)
[37] Zhang, Y., Chen, G., Yu, D., Yao, K., Khudanpur, S., Glass, J.: Highway long short-term memory rnns for distant speech recognition. 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (2016)
[38] Zhou, J., Xu, W.: End-to-end learning of semantic role labeling using recurrent neural networks. In The 53rd Annual Meeting of the Association for Computational Linguistics (2015)
[39] 古倫維、陳信希: 中文意見分析之概況、技術與應用。計算語言學學會通訊,第二十卷第五期 2009.
指導教授 張嘉惠(Chia-Hui Chang) 審核日期 2019-6-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明