博碩士論文 106522029 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:90 、訪客IP:3.135.231.36
姓名 姚君翰(Chun-Han Yao)  查詢紙本館藏   畢業系所 資訊工程學系
論文名稱 根據質譜儀資料辨識大腸桿菌抗藥性之特徵峰值
相關論文
★ 空氣汙染物與疾病關聯性之研究與利用深度學習預測疾病★ 利用質譜儀資料快速檢測金黃色葡萄球菌之抗藥性
★ 蛋白質賴氨酸丙二酰化修飾作用位點之預測系統★ 基於機器學習方法的抗微生物肽活性預測 及特徵分析
★ 用於預測抗菌肽多種功能類別的多標籤分類器★ 利用機器學習預測濁水溪沖積扇區域之地下水砷汙染
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 大腸桿菌(Escherichia coli)是常見的革蘭氏陰性菌,亦為引起尿路感染之主因,如未能及時施用適當之抗生素治療,可能引發嚴重菌血症進而導致死亡。近年來,基質輔助雷射脫附電離飛行時間質譜法(matrix-assisted laser desorption ionization-time of flight mass spectrometry,MALDI-TOF MS)已被廣泛用於微生物之鑑定,亦有研究用以探究細菌產生抗藥性之原因。然而,目前仍缺乏直接依據質譜資料預測大腸桿菌抗藥性之特徵峰值。本研究藉由長庚醫院多年蒐集之臨床大腸桿菌質譜資料,採用兩階段架構並基於機器學習方法分別建立辨識大腸桿菌對五種抗生素(阿莫西林,頭孢他啶,環丙沙星,頭孢曲松,頭孢呋辛)抗藥性之模型,接著,再進一步分析大腸桿菌對不同抗生素之抗藥性的特徵峰值與其分佈情況。第一階段之隨機森林方法,發現當菌株具有9714或4533之峰值,辨識有無抗藥模型較佳;第二階段針對具有此特徵峰值菌株建立之辨識抗藥模型以極限梯度提升(eXtreme Gradient Boosting)表現為最佳,其中,五種抗生素抗藥之接收者操作特徵曲線下面積(Area Under the Receiver Operating Characteristic Curve)分別為0.62、 0.72、0.87、0.72,以及0.72。此外,除了峰值(單位為m/z) 9714和4533外,6809、7393、7650、8447、10475、10534,以及11783亦為辨識大腸桿菌對抗生素有無抗藥之重要特徵峰值。本研究建立之辨識抗藥模型可及時提供臨床醫師用藥之參考,同時,特徵峰值的分析亦可提供微生物實驗找尋對應之蛋白質片段,以探究產生抗藥之原因。
摘要(英) Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) is a widely adopted method for bacteria species identification and also be reported can determinate the antibiotic resistance and reducing the time antibiotics susceptibility test (AST) cost. However, there has a lack of research for identifying and analyzing antibiotic-resistant Escherichia coli (E. coli), a common and well-known bacterium, by MALDI-TOF MS. Therefore, we construct machine learning models for E. coli antibiotic resistance prediction based on the MS data provided by Chang Gung Memorial Hospital. In our study, we build an alignment algorithm to handle the MS shifting problem and peak detection. We performed the two stage model training: split the dataset and build models for predicting resistance of five antibiotics, amoxicillin, ceftazidime, ciprofloxacin, ceftriaxone and cefuroxime by using logistic regression, support vector machine, random forest and eXtreme Gradient Boosting (XGBoost). XGBoost has the best performance in four machine learning models and achieve 0.62, 0.72, 0.87, 0.72, 0.72 AUC respectively in the subset which presents informative peak m/z 4533 for AMC and m/z 9714 for the rest four antibiotics. Furthermore, we identified the informative peaks for resistance determination of five antibiotics. In short, we build the antibiotic resistance prediction models of E. coli which can support doctor to make medication decision, also the analysis of informative peaks provide a worthy field to research further.
關鍵字(中) ★ 基質輔助雷射脫附電離飛行時間質譜法
★ 大腸桿菌
★ 機器學習
★ 抗生素抗藥性
關鍵字(英)
論文目次 中文摘要 i
Abstract ii
致謝 iii
Table of Contents iv
List of Figures v
List of Tables vi
Chapter 1. Introduction 1
1.1. Background 1
1.2. Related Works 3
1.3. Motivation 7
1.4. Goal 8
Chapter 2. Materials and Methods 9
2.1. Dataset and Preprocessing 10
2.2. Feature Extraction 13
2.2.1. Gaussian Kernel Density 14
2.2.2. Peak Detection and Alignment 15
2.2.3. Two Stage Model Training 16
2.3. Machine Learning Models 17
2.3.1. Logistic Regression (LR) 17
2.3.2. Support Vector Machine (SVM) 18
2.3.3. Random Forest (RF) 19
2.3.4. Extreme Gradient Boosting (XGBoost) 20
2.4. Evaluation Metrics 22
Chapter 3. Results 24
3.1. Performance of Prediction 25
3.1. Informative Peaks Analysis 31
Chapter 4. Discussions and Conclusions 38
4.1. Discussions 38
4.2. Conclusions 43
References 44
Appendix 48
參考文獻 [1] L. S. Munoz-Price and R. A. Weinstein, "Acinetobacter Infection," New England Journal of Medicine, vol. 358, no. 12, pp. 1271-1281, 2008.
[2] J. Kluytmans et al., "Nasal Carriage of Staphylococcus Aureus: Epidemiology, Underlying Mechanisms, and Associated Risks," Clinical microbiology reviews, vol. 10, no. 3, pp. 505-520, 1997.
[3] M. E. De Kraker et al., "Mortality and Hospital Stay Associated with Resistant Staphylococcus Aureus and Escherichia Coli Bacteremia: Estimating the Burden of Antibiotic Resistance in Europe," PLoS medicine, vol. 8, no. 10, p. e1001104, 2011.
[4] S. Eurobarometer, "338 ‘Antimicrobial Resistance’, 2009. Survey Commissioned by the Directorate-General for Health and Consumers and Coordinated by the Directorate-General Communication (‘Research and Political Analysis’ Unit)," ed, 2013.
[5] R. J. Fair and Y. Tor, "Antibiotics and Bacterial Resistance in the 21st Century," Perspectives in medicinal chemistry, vol. 6, p. PMC. S14459, 2014.
[6] M. F. Richter et al., "Predictive Compound Accumulation Rules Yield a Broad-Spectrum Antibiotic," Nature, vol. 545, no. 7654, p. 299, 2017.
[7] H. Nikaido, "Prevention of Drug Access to Bacterial Targets: Permeability Barriers and Active Efflux," Science, vol. 264, no. 5157, pp. 382-388, 1994.
[8] D. J. Payne et al., "Drugs for Bad Bugs: Confronting the Challenges of Antibacterial Discovery," Nature reviews Drug discovery, vol. 6, no. 1, p. 29, 2007.
[9] B. Kot et al., "Susceptibility of Escherichia Coli Strains Isolated from Persons with Urinary Tract Infections in 2007-2008 to Antimicrobial Agents," Przeglad epidemiologiczny, vol. 64, no. 2, pp. 307-312, 2010.
[10] G. A. Jacoby and P. Han, "Detection of Extended-Spectrum Beta-Lactamases in Clinical Isolates of Klebsiella Pneumoniae and Escherichia Coli," Journal of clinical microbiology, vol. 34, no. 4, pp. 908-911, 1996.
[11] M. A. Anderson et al., "Diversity and Distribution of Escherichia Coli Genotypes and Antibiotic Resistance Phenotypes in Feces of Humans, Cattle, and Horses," Appl. Environ. Microbiol., vol. 72, no. 11, pp. 6914-6922, 2006.
[12] D. M. Campoli-Richards et al., "Ciprofloxacin," Drugs, vol. 35, no. 4, pp. 373-447, 1988.
[13] R. Davis et al., "Ciprofloxacin," Drugs, vol. 51, no. 6, pp. 1019-1074, 1996.
[14] C. Walsh, "Molecular Mechanisms That Confer Antibacterial Drug Resistance," Nature, vol. 406, no. 6797, p. 775, 2000.
[15] R. Sutherland et al., "Amoxycillin: A New Semi-Synthetic Penicillin," Br Med J, vol. 3, no. 5817, pp. 13-16, 1972.
[16] A. Wieser et al., "Maldi-Tof Ms in Microbiological Diagnostics—Identification of Microorganisms and Beyond (Mini Review)," Applied microbiology and biotechnology, vol. 93, no. 3, pp. 965-974, 2012.
[17] V. Ryzhov and C. Fenselau, "Characterization of the Protein Subset Desorbed by Maldi from Whole Bacterial Cells," Analytical chemistry, vol. 73, no. 4, pp. 746-750, 2001.
[18] E. Carbonnelle et al., "Maldi-Tof Mass Spectrometry Tools for Bacterial Identification in Clinical Microbiology Laboratory," Clinical biochemistry, vol. 44, no. 1, pp. 104-109, 2011.
[19] A. Bizzini et al., "Performance of Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry for Identification of Bacterial Strains Routinely Isolated in a Clinical Microbiology Laboratory," Journal of clinical microbiology, vol. 48, no. 5, pp. 1549-1554, 2010.
[20] G. Vrioni et al., "Maldi-Tof Mass Spectrometry Technology for Detecting Biomarkers of Antimicrobial Resistance: Current Achievements and Future Perspectives," Annals of Translational Medicine, vol. 6, no. 12, 2018.
[21] H.-Y. Wang et al., "A New Scheme for Strain Typing of Methicillin-Resistant Staphylococcus Aureus on the Basis of Matrix-Assisted Laser Desorption Ionization Time-of-Flight Mass Spectrometry by Using Machine Learning Approach," PloS one, vol. 13, no. 3, p. e0194289, 2018.
[22] S. Suarez et al., "Ribosomal Proteins as Biomarkers for Bacterial Identification by Mass Spectrometry in the Clinical Microbiology Laboratory," Journal of microbiological methods, vol. 94, no. 3, pp. 390-396, 2013.
[23] M. Kostrzewa et al., "Maldi‐Tof Ms: An Upcoming Tool for Rapid Detection of Antibiotic Resistance in Microorganisms," PROTEOMICS–Clinical Applications, vol. 7, no. 11-12, pp. 767-778, 2013.
[24] A. Salman et al., "Detection of Antibiotic Resistant Escherichia Coli Bacteria Using Infrared Microscopy and Advanced Multivariate Analysis," Analyst, vol. 142, no. 12, pp. 2136-2144, 2017.
[25] L. Lechowicz et al., "The Use of Infrared Spectroscopy and Artificial Neural Networks for Detection of Uropathogenic Escherichia Coli Strains′ Susceptibility to Cephalothin," Acta Biochimica Polonica, vol. 60, no. 4, 2013.
[26] J. S. Jung et al., "Evaluation of a Semi-Quantitative Maldi-Tof Ms Method for Rapid Antimicrobial Susceptibility Testing of Positive Blood Cultures," Journal of Clinical Microbiology, pp. JCM. 01131-16, 2016.
[27] M. Sauget et al., "Rapid Antibiotic Susceptibility Testing on Blood Cultures Using Maldi-Tof Ms," PloS one, vol. 13, no. 10, p. e0205603, 2018.
[28] E. De Carolis et al., "A Rapid Diagnostic Workflow for Cefotaxime-Resistant Escherichia Coli and Klebsiella Pneumoniae Detection from Blood Cultures by Maldi-Tof Mass Spectrometry," PloS one, vol. 12, no. 10, p. e0185935, 2017.
[29] K. Sparbier et al., "Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry-Based Functional Assay for Rapid Detection of Resistance against Β-Lactam Antibiotics," Journal of clinical microbiology, vol. 50, no. 3, pp. 927-937, 2012.
[30] S. Van Der Walt et al., "The Numpy Array: A Structure for Efficient Numerical Computation," Computing in Science & Engineering, vol. 13, no. 2, p. 22, 2011.
[31] F. Pedregosa et al., "Scikit-Learn: Machine Learning in Python," Journal of machine learning research, vol. 12, no. Oct, pp. 2825-2830, 2011.
[32] E. Jones et al., "{Scipy}: Open Source Scientific Tools for {Python}," 2014.
[33] K. De Bruyne et al., "Bacterial Species Identification from Maldi-Tof Mass Spectra through Data Analysis and Machine Learning," Systematic and applied microbiology, vol. 34, no. 1, pp. 20-29, 2011.
[34] M. Gu and M. Buckley, "Semi-Supervised Machine Learning for Automated Species Identification by Collagen Peptide Mass Fingerprinting," BMC bioinformatics, vol. 19, no. 1, p. 241, 2018.
[35] F. Saeed et al., "An Efficient Algorithm for Clustering of Large-Scale Mass Spectrometry Data," in 2012 IEEE International Conference on Bioinformatics and Biomedicine, 2012: IEEE, pp. 1-4, 2012.
[36] A. Skarysz et al., "Convolutional Neural Networks for Automated Targeted Analysis of Raw Gas Chromatography-Mass Spectrometry Data," in 2018 International Joint Conference on Neural Networks (IJCNN), 2018: IEEE, pp. 1-8, 2018.
[37] J. Lee et al., "Svm Classification Model of Similar Bacteria Species Using Negative Marker: Based on Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry," in 2017 IEEE 17th International Conference on Bioinformatics and Bioengineering (BIBE), 2017: IEEE, pp. 145-150, 2017.
[38] D. E. Rumelhart et al., "Msnet: A Neural Network That Classifies Mass Spectra," 1990.
[39] J. Han et al., Data Mining: Concepts and Techniques. Elsevier, 2011.
[40] T. Chen and C. Guestrin, "Xgboost: A Scalable Tree Boosting System," in Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining, 2016: ACM, pp. 785-794, 2016.
指導教授 洪炯宗 吳立青(Jorng-Tzong Horng Li-Ching Wu) 審核日期 2019-7-10
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明