博碩士論文 106522078 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:103 、訪客IP:18.217.26.216
姓名 詹淳愉(Chun-Yu Chan)  查詢紙本館藏   畢業系所 資訊工程學系
論文名稱 下一代行動網路之非統一ABS 配置方法
(A Non-uniform ABS allocation for next generation networks)
相關論文
★ 基於OP-TEE的可信應用程式軟體生態系統★ 在低軌道衛星無線通訊中的CSI預測方法
★ 為多流量低軌道衛星系統提出的動態換手策略★ 基於Trustzone的智慧型設備語音隱私保護系統
★ 一種減輕LEO衛星網路干擾的方案★ TruzGPS:基於TrustZone的位置隱私權保護系統
★ 衛星地面整合網路之隨機接入前導訊號設計與偵測★ SatPolicy: 基於Trustzone的衛星政策執行系統
★ TruzMalloc: 基於TrustZone 的隱私資料保 護系統★ 衛星地面網路中基於物理層安全的CSI保護方法
★ 低軌道衛星地面整合網路之安全非正交多重存取傳輸★ 低軌道衛星地面網路中的DRX機制設計
★ 衛星地面整合網路之基於集合系統的前導訊號設計★ 基於省電的低軌衛星網路路由演算法
★ 衛星上可重組化計算之安全FPGA動態部分可重組架構★ 衛星網路之基於空間多樣性的前導訊號設計
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 為了滿足現今的網路需求的快速成長以及資料傳輸嚴格的時間延遲要求。這篇論文的目標希望降低大小基地台間的干擾並藉由波束賦形來提升波束的利用率來有效的提升系統效能以及降低最佳化的計算時間。在LTE中,增強型蜂巢式區域間干擾消除技術利用統一的ABS配置也就是所有大小基地台都使用相同的ABS配置來降低基地台間的干擾,並利用基地台範圍擴展技術來達到負載平衡。然而採用統一的ABS配置會因為無法有效的利用每個基地台的波束而造成系統資源的浪費。為了解決這個資源浪費的問題,我們提出一個在雙連線環境下使用非統一的ABS配置結合基地台範圍擴展技術可以使得每個基地台的波束都有自己最佳的ABS比例來提升波束的利用率。在這篇論文中,當小基地的波束上具有小基地台邊緣使用者時,讓小基地台邊緣使用者在ABS訊框接收下行資料且讓小基地台中心使用者在非ABS訊框接收下行資料。當小基地台的波束上不存在小基地台邊緣使用者時,讓小基地台的中心使用者可以在ABS以及非ABS訊框接收資料。最後我們使用Gurobi這個最佳化計算工具來評估演算法的效能及執行時間。
摘要(英) In order to satisfy increasing traffic demands, 5G network supported beamforming to improve the system throughput. This paper aims to reduce the interference between macro cell and small cell and increase the system beam utilization by beamforming to efficiently improve the system throughput and decrease the execution time of optimal ABS allocation computation. In LTE, traditional enhanced Inter-Cell Interference Coordination reduces the interference between cells by Uniform ABS allocation and achieves load balancing by Cell Range Expansion. However, adopting Uniform ABS allocation will waste the system resources because it can′t fully utilize the beam of each cell. In order to address the waste of resources problem, we proposed a beam-based Non-uniform ABS allocation with CRE in Dual Connectivity algorithm that made each beam of cells use its own optimal ABS ratio to increase the beam utilization and each small cell have its own optimal CRE bias. Other than this, in this paper, if there are small cell edge users located at the beam of small cell, we will allocate the ABS subframes for small cell edge users and Non-ABS subframes for small cell center users. If there are no small cell edge users located at the beam of small cell, we will allocate the ABS subframes and Non-ABS subframes for small cell center users to receive downlink data. Final, we used Gurobi which is a commercial optimization solver to evaluate our performance and execution time.
關鍵字(中) ★ 幾乎空白子訊框
★ 基地台範圍擴展
★ 雙連線
關鍵字(英) ★ ABS
★ CRE
★ Dual Connectivity
論文目次 中文摘要 i
Abstract ii
Contents iii
List of Figures v
List of Tables vii
1 INTRODUCTION 1
2 RELATED WORK AND PRELIMINARY 4
2.1 enhanced Inter-Cell Interference Coordination (eICIC) 4
2.1.1 Cell Range Expansion (CRE) 4
2.1.2 Almost Blank Subframes (ABS) 5
2.2 Dual Connectivity 8
3 SYSTEM MODEL 10
3.1 Phy Data Rate 10
3.2 ABS Transmission Information 11
4 THE PROPOSED ALGORITHM MODEL 14
4.1 Non-Uniform ABS under Beamforming Environments 15
4.2 Non-uniform CRE under Beamforming Environments 17
4.3 Starvation of Small Cell Edge Users 18
4.4 Small Cell Between Two Macro Cell Beam 18
4.5 Mathematical Model 19
4.6 Computation Cost 22
4.7 Detail of the Proposed Algorithm Model 23
5 EVALUATION 25
5.1 Scenario 25
5.2 Comparative eICIC Schemes 26
5.3 Execution time Estimation 27
5.4 Throughput Estimation 27
5.4.1 Fixed ABS Ratio vs. Dynamic ABS Ratio 28
5.4.2 Uniform ABS Allocation vs. Non-uniform ABS Allocation 28
5.4.3 Static CRE vs. Dynamic CRE 29
5.4.4 Traditional UE Allocation vs. Dynamic UE Allocation 29
6 CONCLUSION 31
Bibliography 32
參考文獻 [1] L. Liu, Y. Zhou, A. V. Vasilakos, L. Tian, and J. Shi, “Time-domain ICIC and optimized designs for 5G and beyond: a survey,” Science China Information Sciences, vol. 62, no. 2, 2019.
[2] S. Moon, B. Kim, S. Malik, C. Kim, Y. Kim, K. Yeo, and I. Hwang, “Frequency and Time Resource Allocation for Enhanced Interference Management in a Heterogeneous Network based on the LTE-Advanced,” International Conference on Wireless and Mobile Communications (ICWMC), 2013.
[3] R. D. Ainul, H. Mahmudah, and A. Wijayanti, “Scheduling schemes of time and frequency resource allocation for interference coordination method based on user priority in LTE-femtocell,” International Electronics Symposium (IES), 2015.
[4] R. P. Antonioli, G. C. Parente, C. F. M. e Silva, E. B. Rodrigues, T. F. Maciel, and F. R. P. Cavalcanti, “Dual Connectivity for LTE-NR Cellular Networks: Challenges and Open issues,” Journal of Communication and Information Systems, vol. 33, no. 1, 2018.
[5] F. Kelly, “Charging and rate control for elastic traffic,” European Transactions on Telecommunications banner, vol. 8, no. 1, 1997.
[6] S. Deb, P. Monogioudis, J. Miernik, and J. P. Seymour, “Algorithms for Enhanced Inter-Cell Interference Coordination (eICIC) in LTE HetNets,” IEEE/ACM Transactions on networking, vol. 22, no. 1, 2014.
[7] M. L. Fisher, “The Lagrangian Relaxation Method for Solving Integer Programming Problems,” Management Science, vol. 50, no. 12, 2004.
[8] A. Nedic and A. Ozdaglar, “Subgradient methods in network resource allocation: Rate analysis,” Annual Conference on Information Sciences and Systems, 2008.
[9] J. Zheng, J. Li, N. Wang, and X. Yang, “Joint Load Balancing of Downlink and Uplink for eICIC in Heterogeneous Network,” IEEE Transactions on vehicular technology, vol. 66, no. 7, 2017.
[10] Y. C. Wang and S. T. Chen, “Adaptive Configuration of Time-domain eICIC to Support Multimedia Communications in LTE-A Heterogeneous Networks,” IEEE 18th International Symposium on A World of Wireless, Mobile and Multimedia Networks (WoWMoM), 2017.
[11] R. Singh and C. S. R. Murthy, “Techniques for Interference Mitigation Using Cooperative Resource Partitioning in Multitier LTE HetNets,” IEEE Systems Journal, vol. 12, no. 1, 2018.
[12] M. Polese, M. Mezzavilla, and M. Zorzi, “Performance Comparison of Dual Connectivity and Hard Handover for LTE-5G Tight Integration,” Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering (ICST), 2016.
[13] ShareTechNote, “5G/NR - SS Block,” Retrieved 2019, from the World Wide Web: http://www.sharetechnote.com/html/5G/5G_SS_Block.html, 2019.
[14] A. Chiumento, M. Bennis, C. Desset, L. V. der Perre, and S. Pollin, “Adaptive CSI and feedback estimation in LTE and beyond: a Gaussian process regression approach,” EURASIP Journal on Wireless Communications and Networking, vol. 168, no. 1, 2015.
[15] NetSimSupportTeam, “How to calculate PHY Data Rate in LTE?” Retrieved 2019, from the World Wide Web: https://tetcos.freshdesk.com/support/solutions/articles/14000069248-how-to-calculate-phy-data-rate-in-lte-, 2019.
[16] Telecom Technology Center, “Ehanced Inter-Cell Interference Cancellation.”
[17] 3GPP TS36.423 V11.4.0, “LTE Evolved Universal Terrestrial Radio Access Network (E-UTRAN) X2 Application Protocol (X2AP),” 3rd Generation Partnership Project (3GPP), 2013.
[18] J. Acharya, L. Gao, and S. Gaur, Heterogeneous Networks in LTE-Advanced. Wiley, 2014.
[19] M. T. Kawser, H. M. A. B. Farid, A. R. Hasin, A. M. J. Sadik, and I. K. Razu, “Performance Comparison between Round Robin and Proportional Fair Scheduling Methods for LTE,” International Journal of Information and Electronics Engineering, vol. 2, no. 5, 2012.
[20] S. Deb, P. Monogioudis, J. Miernik, and J. P. Seymour, “Algorithms for Enhanced Inter-Cell Interference Coordination (eICIC) in LTE HetNets,” Alcatel-Lucent Internal Tech. Rep, 2012.
[21] E. Rothberg, R. Bixby, Z. Gu, D. Perrucci, G. Glockner, K. Gundersen, J.-C. Mani, and T. Pesanelli, “Gurobi Optimizer,” Retrieved 2019, from the World Wide Web: http://www.gurobi.com/, 2019.
[22] ShareTechNote, “5G/NR - Frame Structure,” Retrieved 2019, from the World Wide Web: http://www.sharetechnote.com/html/5G/5G_FrameStructure.html, 2019.
[23] 3GPP TS38.101-1 V1.0.0, “Technical Specification Group Radio Access Network NR User Equipment (UE) radio transmission and reception - Part 1: Range 1 Standalone,” 3rd Generation Partnership Project (3GPP), 2017.
[24] 3GPP TS38.101-2 V1.0.0, “Technical Specification Group Radio Access Network NR User Equipment (UE) radio transmission and reception - Part 2: Range 2 Standalone,” 3rd Generation Partnership Project (3GPP), 2017.
指導教授 張貴雲(Guey-Yun Chang) 審核日期 2019-7-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明