博碩士論文 106522030 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:44 、訪客IP:18.191.139.218
姓名 范振倫(Chen-Lun Fan)  查詢紙本館藏   畢業系所 資訊工程學系
論文名稱 基於馬可夫鏈與深度神經網路線切割放電加工機表面粗糙度預測
(Surface Roughness Prediction based on Markov Chain and Deep Neural Network for Wire Electrical Discharge Machining)
相關論文
★ 以IEEE 802.11為基礎行動隨意無線網路之混合式省電通訊協定★ 以范諾圖為基礎的對等式網路虛擬環境相鄰節點一致性研究
★ 行動隨意網路可調適及可延展之位置服務協定★ 同儕式網路虛擬環境高效率互動範圍群播
★ 巨量多人線上遊戲之同儕網路互動範圍語音交談★ 基於范諾圖之同儕式網路虛擬環境狀態管理
★ 利用多變量分析 之多人線上遊戲信任使用者選擇★ 無位置資訊無線感測網路之覆蓋及連通維持
★ 同儕網路虛擬環境3D串流同儕選擇策略★ 一個使用802.11與RFID技術的無所不在導覽系統U-Guide之設計與實作
★ 同儕式三維資料串流★ IM Finder: 透過即時通訊網路線上使用者找尋解答
★ 無位置資訊無線感測網路自走車有向天線導航與協調演算法★ 多匯點無線感測網路省能及流量分散事件輪廓追蹤
★ 頻寬感知同儕式3D串流★ 無線感測網路旋轉指向天線定位法
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 工業4.0(Industry 4.0)智慧製造(Smart Manufacturing)是近來很熱門的議題。現今全球製造業致力於藉由工業物聯網、大數據分析、虛實融合系統(Cyber Physical System, CPS)等技術實現智慧製造(Smart Manufacturing),以便能夠在節省生產時間與成本的情況下,提高生產品效能與產品品質。本論文探討虛擬量測(Virtual Metrology, VM)研究,在生產過程尚未完成前或完成後,在不需要或無法實際量測產品的情況下預測產品品質。具體的說,本論文聚焦於線切割放電加工機台加工產品表面粗糙度(Surface Roughness)預測,利用2次回歸方程及深度神經網路方法,在產品加工前透過生產參數預測產品表面粗糙度。另外,本論文利用馬可夫鏈(Markov Chain)配合深度神經網路(Deep Neural Network, DNN)方法,在產品加工完成後,透過生產參數及生產過程機台狀態時序性資料預測產品表面粗糙度。為了處理長度不同的時序性資料,本論文利用馬可夫鏈提取特徵以此將長度歸一化,再透過神經網路來預測產品品質。我們透過全因子實驗方法進行實驗數據蒐集以驗證所提方法的預測準確度,實驗結果顯示,本論文所提預測方法具有良好的平均絕對誤差及誤差率。
摘要(英) Industry 4.0 Smart Manufacturing is a hot topic recently. Today′s global manufacturing industry is committed to smart manufacturing through industrial Internet of Things, big data analytics, and Cyber Physical System (CPS) technologies to improve product performance and product quality by saving production time and cost. This paper explores Virtual Metrology (VM) research to predict product quality before or after the production process has not been completed, without the need of product measurement. Specifically, this paper focuses on the Surface Roughness prediction of wire-cut EDM machines, and uses the 2nd order regression and the deep neural network method to predict the surface roughness of the product through production parameters before product processing. In addition, this thesis uses Markov Chain and Deep Neural Network (DNN) method to predict the surface roughness of the product through production parameters and time series data of the production process after the product is processed. In order to deal with the time series data with different lengths, this paper uses the Markov chain extraction feature to normalize the length and then predict the product quality through the neural network. We use the full factor experimental method to collect experimental data to verify the prediction accuracy of the proposed method. The experimental results show that the proposed prediction method has good mean absolute error and error rate.
關鍵字(中) ★ 工業4.0
★ 智慧製造
★ 馬可夫鏈
★ 線切割放電加工
★ 表面粗糙度
★ 深度神經網路
★ 虛擬量測
關鍵字(英) ★ Industry 4.0
★ Smart Manufacturing
★ Markov Chain
★ WEDM
★ Surface Roughness
★ Deep Neural Network
★ Virtual Metrology
論文目次 中文摘要 I
Abstract II
誌謝 III
目錄 IV
圖目錄 VI
表目錄 VIII
一、 緒論 1
1.1. 研究背景與動機 1
1.2. 研究目的與貢獻 2
1.3. 相關文獻探討 3
1.4. 論文架構 3
二、 背景知識與相關文獻探討 4
2.1. 放電加工 4
2.1.1. 放電加工簡介 4
2.1.2. 線切割放電加工 5
2.2. 馬可夫鏈 7
2.2.1. 馬可夫鏈簡介 7
2.2.2. 馬可夫時序預測法(Markov Forecasting Model) 8
2.3. 人工神經網路 10
2.3.1. 人工神經網路簡介 10
2.3.2. 反向傳播演算法(Back-Propagation Algorithm) 16
2.4. 深度學習 18
2.4.1. 深度學習介紹 18
2.4.2. 深度神經網路(Deep Neural-Network) 19
2.5. 相關文獻 20
2.5.1. Design of Experiment 21
2.5.2. Box-Behnken design 22
三、 問題定義與研究 24
3.1. 問題定義 24
3.2. 標籤定義 27
3.3. 資料前處理 28
3.3.1. 取出可用資料 28
3.3.2. 特徵萃取 29
3.3.2.1. 資料長度歸一化 30
3.3.2.2. 資料轉換馬可夫鏈形式 31
3.4. 模型架構 35
3.5. 訓練最佳化 37
四、 實驗與分析 39
4.1. 實驗環境 39
4.1.1. 硬體設備 39
4.1.2. 訓練框架 39
4.2. 實驗結果 42
五、 結論與未來展望 47
參考文獻 48
參考文獻 [1] Virtual Methodology:
https://ejournal.stpi.narl.org.tw/sd/download?source=10210-08.pdf&vlId=E587FCF7-697D-4DC8-9820-EAEE679454BC&nd=1&ds=1
[2] K.H Ho, S.T Newman, S. Rahimifard, R.D Allen. “State of the art in wire electrical discharge machining (WEDM)”. In International Journal of Machine Tools and Manufacture. pp 1247-1259, 2004
[3] K.H. Ho, S.T. Newman. “State of the art electrical discharge machining (EDM)”. In International Journal of Machine Tools and Manufacture. pp 1287-1300, 2003
[4] H. Ozkan, F. Ozkan, S. S.Kozat, “Online Anomaly Detection Under Markov StatisticsWith Controllable Type-I Error”. IEEE Trans. Signal Processing. 64(6), 1435–1445, 2016
[5] U. Esme, A. Sagbas, F. Kahraman. “Prediction of Surface Roughness in Wire Electrical Discharge Machining Using Design of Experiments and Neural Networks”. In Iranian Journal of Science & Technology, Transaction B, Engineering. pp 231-240, 2009
[6] A. Kumar, V. Kumar, J. Kumar. “Prediction of Surface Roughness in Wire Electric Discharge Machining (WEDM) Process based on Response Surface Methodology”. In International Journal of Engineering and Technology, 2012
[7] 類神經網路-感知機的原理及實作:
https://1fly2sky.wordpress.com/2017/02/14/%E9%A1%9E%E7%A5%9E%E7%B6%93%E7%B6%B2%E8%B7%AF-%E6%84%9F%E7%9F%A5%E6%A9%9F%E7%9A%84%E5%8E%9F%E7%90%86%E4%BB%A5%E5%8F%8A%E5%AF%A6%E4%BD%9C/
[8] JavaScript neural network implementation:
https://blog.toright.com/posts/5234/javascript-%E5%AF%A6%E7%8F%BE%E9%A1%9E%E7%A5%9E%E7%B6%93%E7%B6%B2%E8%B7%AF-%E7%80%8F%E8%A6%BD%E5%99%A8-deep-learning-%E5%A5%BD%E6%A3%92%E6%A3%92.html
[9] J. E. Lee, J. R. Jiang, “Time Series Multi-Channel Convolutional Neural Network for Bearing Remaining Useful Life Estimation”, 2018
[10] 入門深度學習
https://medium.com/@syshen/%E5%85%A5%E9%96%80%E6%B7%B1%E5%BA%A6%E5%AD%B8%E7%BF%92-2-d694cad7d1e5
[11] Accutex - GE Series:
https://www.accutex.com.tw/products.htm
[12] Design of Experiment
Ronald A. Fisher. “The Design of Experiments”. England : Macmillan Pub Co. 1935
[13] Electronica - Sprintcut 734:
https://electronicagroup.com/cnc-wirecut-edm/
[14] G. Box, D. Behnken, “Some new three level designs for the study of quantitative variables”, Technometrics, Volume 2, pages 455–475, 1960.
[15] CHMER - Q4025L:
http://www.chmer.com/tw/products-view.php?id=76
[16] Tokyo Seimitsu - Surfcom 130A:
http://www.accretech.com.cn/surfcom.html
[17] D. E. Paul, B. J. T, K. Ronald. A, “Materials and Processes in Manufacturing (9th ed.)”, Wiley, ISBN 0-471-65653-4. 2003
[18] D. Zang, J. Liu and H. Wang. “Markov Chain-Based Feature Extraction for Anomaly Detection in Time Series and Its Industrial Application”. In 2018 Chinese Control And Decision Conference (CCDC). pp1059-1063. 2018
[19] G. Klambauer, T. Unterthiner, A. Mayer and S. Hochreiter. “Self-Normalizing Neural Networks”. arXiv preprint arXiv:1706.02515.
[20] Samuel B. Green. “How Many Subjects Does It Take To Do A Regression Analysis”. Multivariate Behavioral Research. pp 499-510. 2010
[21] D. P. Kingma, J. Ba. “Adam: A method for stochastic optimization”. arXiv preprint arXiv:1412.6980. 2014
指導教授 江振瑞(Jehn-Ruey Jiang) 審核日期 2019-7-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明