博碩士論文 106423024 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:24 、訪客IP:3.19.56.45
姓名 戴立宸(Li-Chen Tai)  查詢紙本館藏   畢業系所 資訊管理學系
論文名稱 利用程式交易驗證深度學習的股價預測之獲利與風險
(Verify the profit and risk of stock price prediction from deep learning by using program trading)
相關論文
★ 針對提昇資料倉儲資料庫執行效能之知識管理與相關系統設計★ 以關聯規則探勘為基礎,探討詐騙車手提領型態互動之研究
★ 部落格之網路口碑評比機制平台管理與應用★ 虛擬貨幣交易平台之實現
★ 適用於多種設備的可否認鑑別協定之設計★ 交易程式最佳化的多維度分析平台之設計與建置
★ 多商品多策略程式交易績效曲線比較和分群機制之研究★ 以工作流程與Portlet為基礎整合學習管理系統以支援課程編組
★ 使用服務導向技術建構具支援二線廠客製化能力的電子中樞系統之研究★ 以流程為中心的Portlet重用性分析
★ 應用資料倉儲技術建構平衡計分卡資訊系統之研究-以某消費性電子製造公司人力資源計分卡為例★ 自動化的產品平台管理與應用
★ 以代理人為基礎的資訊系統協助新產品開發流程的自動化★ 以整合式的教練引導開發以框架為基礎的專案
★ 支援新產品研發的整合性知識管理系統★ 以流程為導向協同異質性數位學習系統中呈現層與資料層之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 一般深度學習做金融商品價格預測時,偏重於使用數值誤差的統計函數(如R^2)做預估準確度的評估當作學習時的回饋機制,但對於實際交易而言,股價預測值所導致的預測交易方向(該買還是該賣)上的誤差,常會比預測值與實際值的數值誤差對交易獲利影響更大,但目前深度學習對時間序列預測的研究顯少觸及此議題,但其有實務上的重要性。
本研究先依據數值誤差(R^2,MASE)比較LSTM與TCN兩大類深度學習方式的收盤價預測模型,找出其高準確度的參數設定,再將其實際運用在交易上。本研究運用程式交易,探索這些預測收盤價是否有達成實際獲利的潛力,若有,則比較其獲利性與原始數值誤差的關係。本研究並提出了透過客製化損失函數將真實交易中所特別重視的實際交易方向(買進或賣出)納入考量,以利提升實際交易獲利。
本研究針對三種常被交易的期貨商品(黃金,黃豆,原油)進行上述整體運算與比較,並發現上述三個商品中,黃金及黃豆在最小化數值誤差的同時也能提升交易獲利,但原油則無法。該黃金及黃豆若再加上考量交易方向誤差的客製化損失函數時,也能進一步提升實際交易獲利。但原油在原本最小化數值誤差也無法提升獲利的商品,則本研究提出的客製化損失函數也無法提升獲利。
摘要(英) Normally, when deep learning is used to predict the price of the financial commodity, people most used the statistical function (such as R^2) that compliance to the numerical error to assessing the accuracy of the estimate as a learning mechanism. However, for the real trading, the forecast trading direction (to buy or to sell) cause by the error of the stock price prediction usually has a greater impact on the profitability of trading than the numerical error between the predicted value and the actual value, but the study of time series prediction by deep learning today rarely explores this topic, but it has practical importance.
In this study, we compare the closing price prediction model of LSTM and TCN based on the numerical error (R^2, MASE), to find out the high-accuracy parameter settings and use it on the real trading. We use program trading to explore whether these predicting of closing prices can achieve actual profitability or not, and if so, we will compare the relationship between its profitability and the original numerical error. This study also proposes a custom loss function that incorporate the actual trading direction (to buy or to sell) to increase the profit of real trading.
This study is aimed at three futures commodities that are often traded (gold, soybean, crude oil) and perform the above overall calculation and comparison, and we found that some of the commodities will increase the profit when minimized the numerical error, but others not. More than that, that kind of commodities can also enhance the profit of real trading when it adds a custom loss function. However, if the commodities can’t increase the profit when minimized the numerical error, the custom loss function in this study also can’t increase the profit.
關鍵字(中) ★ 深度學習
★ 股價預測
★ 程式交易
★ 時間序列
★ TCN
關鍵字(英) ★ Deep Learning
★ Stock Price Prediction
★ Program Trading
★ Time Series
★ TCN
論文目次 摘要 i
Abstract ii
致謝 iii
目錄 iv
圖目錄 vi
表目錄 viii
第一章 緒論 1
1.1 研究背景 1
1.2 研究動機 1
1.3 研究目的 3
第二章 文獻探討 4
2.1 時間序列 4
2.2 神經網路 4
2.3 深度學習 4
2.3.1 啟動函數(激勵函數) 5
2.3.2 損失函數(Loss function) 8
2.3.3 時間序列預測 9
2.4 模型評估指標 10
2.5 程式交易 11
第三章 系統設計與實作 12
3.1 系統流程與架構 12
3.2 隔日沖交易 12
3.3 隔日收盤價預測模型設計 13
3.4 隔日沖交易策略設計 15
3.4.1 三種實驗交易商品的資料集 16
3.5 收盤價預測模型流程 16
3.6 模型內預測結果評估 18
3.7 隔日沖交易結果之有效性評估 19
3.8 收盤價預測模型之調整 19
3.8.1 客製化損失函數 19
3.9 收盤價預測模型之整體評估 20
第四章 系統驗證與結果 21
4.1 系統流程與驗證 21
4.2 驗證深度學習模型之比較結果 21
4.3 程式交易回測之獲利驗證結果 30
4.4 驗證模型經客製化損失函數調整之比較結果 35
4.5 驗證模型經客製化損失函數調整後之獲利性比較 44
4.6 客製化函數修正前後的模型間獲利性比較 49
第五章 結論 52
5.1 結論 52
5.2 研究限制 53
5.3 未來展望 53
參考文獻 55
附錄一、交易策略參數表 56
參考文獻 1. Bai, S., Kolter, J.Z., & Koltun, V. (2018). An Empirical Evaluation of Generic Convolutional and Recurrent Networks for Sequence Modeling, from https://arxiv.org/pdf/1803.01271.pdf
2. Chollet, F. (2017). DEEP LEARNING with Python. USA: Manning Publications.
3. Davidson-Pilon, C. (2013). Computes the MEAN-ABSOLUTE SCALED ERROR forcast error for univariate time series prediction. Retrieved January 29, 2019, from https://github.com/CamDavidsonPilon/Python-Numerics/blob/master/TimeSeries/MASE.py
4. Gers, F. A., Schmindhuber, J., Cummins, F. (1999). Learning to Forget: Continual Prediction with LSTM, Proceedings of Ninth International Conference on Artificial Neural Networks (ICANN’99). No.470 (850-855).
5. Granger, C. W. J. (1999). Outline of Forecast Throry Using Generalized Cost Functions, Proceedings of Spanish Economic Review. Vol.1 (161-173).
6. Greff, K., Srivastava, R. K., Koutnik, J., Steunebring, B. R.& Schmidhuber, J. (2017). LSTM: A Search Space Odyssey. Proceedings of IEEE Transactions on Neural Networks and Learning Systems 28 (2222-2232).
7. Hochreiter, S., Klambauer, G., Unterthiner, T.,& Mayr, A. (2017). Self-Normalizing Neural Networks. Proceedings of NIPS’17 Advances in Neural Information Processing Systems 30
8. Hyndman, R.J.,& Koehler, A.B. (2006). Another look at measures of forecast accuracy. Proceedings of International Journal of Forecasting. Vol.22. No.4 (679-688).
9. Keras. (2019). Usage of loss functions. Retrieved February 20, 2019, from https://keras.io/losses/#available-loss-functions
10. Krizhevsky, A., Sutskever, I.,& Hinton, G.E. (2012) . ImageNet Classification with Deep Convolutional Neural Network. Proceedings of the 25th International Conference on Neural Information Processing Systems (NIPS’12). Vol.1. (1097-1105).
11. LeCun, Y., Bengio, Y.,& Hinton, G. (2015). Deep learning. Proceedings of Nature 521, (436-444)
12. Lee, T. (2007). Loss Functions in Time Series Forecasting. Unpublished master dissertation, University of California, Riverside, USA.
13. Leinweber, D.J., 2007, “Stupid Data Miner Tricks: Overfitting the S&P 500”, The Journal of Investing Spring 2007, Vol.16, pp.15-22
14. Li, H., Shen, Y.,& Zhu, Y. (2018). Stock Price Prediction Using Attention-based Multi-Input LSTM. Proceedings of The 10th Asian Conference on Machine Learning(PMLR 95)( 454-469).
15. McLean, A. (2001) On the Nature and Role of Hypothesis Test. Monash Econometrics and Business Statistics Working Papers 4/01, Monash University, Department of Econometrics and Business Statistics.
16. Multicharts (2019)。交易平台介紹。取自2019年2月20日,http://www.multicharts.com.tw/characteristic.aspx
17. Oord, A., Dieleman, S., Zen, H., Simonyan, K., Vinyals, O., Graves, A., Kalchbrenner, N., Senior, A.,& Kavukcuoglu, K. (2016), Wavenet: A Generative Model For Raw Audio. Google AI. Retrieved March 6, 2019 from https://arxiv.org/pdf/1609.03499.pdf
18. Pant, N. (2017). A Guide For Time Series Prediction Using Recurrent Neural Networks(LSTMS). Retrieved September 6, 2018 from https://blog.statsbot.co/time-series-prediction-using-recurrent-neural-networks-lstms-807fa6ca7f
19. Schoneburg, E. (1990). Stock price prediction using neural networks: A project report. Neurocomputing 2 (17-27).
20. Walter, J., Ritter, H.,& Schulten, K. (1990). Non-linear Prediction with Self-organizing Maps. IJCNN International Joint Conference on Neural Networks (17-21).
21. 張林忠(2014)。分析師關鍵報告2:張林忠教你程式交易。寰宇出版社。
22. 董寶蘭(2010)。程式交易策略實證研究-以投資ETF0050為例,私立淡江大學管理科學研究所企業經營碩士在職專班碩士論文,台灣,新北。
指導教授 許智誠(Chih-cheng Hsu) 審核日期 2019-6-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明