博碩士論文 92523052 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:83 、訪客IP:18.188.38.252
姓名 陳一嘉(I-Chia Chen)  查詢紙本館藏   畢業系所 通訊工程學系
論文名稱 5.5/14 GHz 壓控振盪器與髮夾式/環型耦合濾波器之研製
(Implementation of 5.5 / 14 GHz Voltage-Controlled Oscillators and Hairpin /Ring-Coupled Filters)
相關論文
★ 應用於筆記型電腦數位電視單極天線之研製★ 應用於數位機上盒與纜線數據機之電纜多媒體傳輸標準多工濾波器
★ 印刷共面波導饋入式多頻帶與超寬頻天線設計★ 微波存取全球互通頻段前向匯入式功率放大器與高效率Class F類功率放大器暨壓控振盪器電路之研製
★ 應用於矽基功率放大器與混頻器之傳輸線型變壓器研究★ 應用於V-頻段射頻收發機前端電路之低功耗源極注入式混頻器之研製
★ 應用積體電路上方後製程與整合被動元件於互補式金氧半導體製程之系統封裝研究★ 應用fT-倍頻電路架構於毫米波壓控振盪器與注入鎖定除頻器之研製
★ 應用傳輸線型變壓器於X/K–Ka/V頻段全積體整合之寬頻互補式金氧半導體功率放大器研製★ 應用於K / V 頻段低功耗混頻器之研製
★ 應用於K/V頻段之低功耗CMOS低雜訊放大器之研究★ 應用於5-GHz CMOS射頻前端電路之低電壓自偏壓式混頻器與高線性化功率放大器之研製
★ 應用於 K 頻段射頻接收機之寬頻低功耗 CMOS 低雜訊放大器之研製★ 應用磁耦合變壓器於K頻段之低功耗互補式金氧半導體壓控振盪器研製
★ 應用於K頻段之單向化全積體整合功率放大器與應用於V頻段之寬頻功率放大器研製★ 應用於C/X頻段全積體整合之互補式金氧半導體寬頻低功耗降頻器與寬頻功率混頻器之研製
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 摘要
近年來,由於全球通信市場蓬勃發展與手持式電子產品之流行,更推動了網際網路之設備朝向無線通訊領域發展。而射頻電路設計便是無線通訊中一個關鍵性的技術,如RF 放大器、濾波器、混波器及振盪器都是其中重要的元件,因此在無線通訊系統中,射頻電路扮演著舉足輕重的角色。本論文包含了兩個部份,第一部份為使用2.0mm GaAs HBT製程與0.15mm GaAa pHEMT製程來設計壓控振盪器電路包含5.5 GHZ交連耦合/考畢茲壓控振盪器與14GHz 單端輸出壓控振盪器;第二部份為使用FR4基板,設計2.4GHz濾波器,包含髮夾式濾波器與環型耦合濾波器。
第一部份,所設計之晶片皆採用高頻探針方式進行量測。其電路量測結果如下:對5.5 GHz壓控振盪器而言,相位雜訊在100 KHz offset小於-85 dBc/Hz,可調頻率範圍為大於500 MHz ,輸出功率為大於-6 dBm。電路以3.5 V為電源供給,功率消耗約90 mW,其晶片面積為1.5×1 。對14 GHz壓控振盪器而言,相位雜訊在100 KHz offset小於-80dBc/Hz,可調頻率範圍約為1000 MHz ,輸出功率大於-2 dBm。電路以2.2 V為電源供給,功率消耗約120 mW,其晶片面積為1.5×1 。
論文第二部份,所設計之濾波器皆採用網路分析儀進行量測,亦使用耦合係數法進一步改良帶通濾波器之效能。對2.4 GHz濾波器量測結果如下:中心頻率為2.4 GHz,比例頻帶約為10 ﹪,帶通插入損失約為-4 dB與反射損失皆小於-10 dB,實際量測與電腦模擬的結果相當吻合。
本論文均以實例進行設計與製作,並將所得之結果相互比較。此研究所獲得的經驗,可供日後設計壓控振盪器與濾波器之依據。
摘要(英) Recently, since the booming of wireless communication and multi-media services are getting popular, new applications such as wireless multi-media demands much fast speed and wide bandwidth. RF circuit design is one of the key technologies of the wireless communication system. The key components, such as RF amplifier, filter, mixer, and oscillator, are the most fundamental elements of the wireless system. Thus, the RF circuit technologies play an important role in the development of the wireless system. This thesis divides into two parts. The first part is the VCO design using 2.0mm InGaP HBT and pHEMT 0.15mm processes. The VCO design includes 5.5 /14 GHz voltage controlled oscillator (VCO). The second part is the 2.4 GHz filter on FR4 PCB. Hairpin and Ring-Couple filters are designed and implemented.
The VCO chips were performed on-chip measurement. The 5.5 GHz VCO obtained the phase noise of -85 dBc/Hz at 100 KHz offset, the tuning ranges of 500 MHz, and the output power of –6 dBm. The chips’ area are compact as 1.5×1 . The resulting power consumption is about 90 mW at the 3.5 V power supply. The 14 GHz VCO obtained the phase noise of -80 dBc/Hz at 100 KHz offset, the tuning range of 1000 MHz, and VCO’s output power of -2dBm. The chips area were 1.5×1 . The resulting power consumption is about 120 mW at the 2.2 V power supply.
In second part, S-parameters of the filters were measured using vector network analyzer. From the measurement result, center frequency, return loss and fractional bandwidth are about 2.4 GHz, -10 dB and 10, respectively. The measured results are good agreement with the theoretical predictions.
關鍵字(中) ★ 濾波器
★ 振盪器
關鍵字(英) ★ Voltage-Controlled Oscillator
★ Filter
論文目次 中文摘要………………………………………………………………………………I
英文摘要……………………………………………………………………………II
誌謝…………………………………………………………………………………III
目錄…………………………………………………………………………………IV
圖目錄……………………………………………………………………………VII
表目錄……………………………………………………………………………XIII
第一章 緒論
1-1 研究動機與相關背景……………………………………………………………1
1-2 章節概述…………………………………………………………………………2
第二章 5.5 GHz 壓控振盪器
2-1 2.0mm GaAs HBT 製程技術簡介………………………………………………4
2-2 微波振盪器設計簡介……………………………………………………………6
2-2-1 負電阻法…………………………………………………………………6
2-2-2 正回授法…………………………………………………………………9
2-2-3 電容電感振盪器………………………………………………………11
2-3 相位雜訊………………………………………………………………………13
2-3-1 相位雜訊之定義………………………………………………………13
2-3-2相位雜訊對通訊系統的影響……………………………………………15
2-4 5.5 GHz交連耦合與考畢茲壓控振盪器之設計………………………………16
2-4-1 交連耦合振盪器電路架構與原理…………………………………16
2-4-2 考畢滋壓控振盪器架構與原理………………………………………18
2-4-3 5.5 GHz壓控振盪器之設計流程與實際電路………………………19
2-5 模擬與量測……………………………………………………………………..23
2-5-1 交連耦合壓控振盪器之模擬與量測…………………………………23
2-5-2 對稱式交連耦合考畢滋壓控振盪器之模擬與量測…………………28
2-6 5.5 GHz 壓控振盪器之討論……………………………………………………33
第三章 14 GHz單端輸出壓控振盪器
3-1 0.15mm GaAs pHEMT 製程技術簡介……………………………………34
3-2 電晶體穩定度之介紹…………………………………………………………37
3-3 14 GHz單端輸出壓控振盪器之設計…………………………………………40
3-3-1 14 GHz單端輸出壓控振盪器之電路架構原理………………………40
3-3-2 14 GHz單端輸出壓控振盪器之設計流程與實際電路………………41
3-4模擬與量測……………………………………….……………………………43
3-5 14 GHz單端輸出壓控振盪器之討論…………………………………………47
第四章 2.4 GHz濾波器
4-1 濾波器之簡介…………………………………………………………….……48
4-2 耦合係數法的應用……………………………………………………………49
4-2-1 Hairpin濾波器設計……………………………………………………50
4-2-2 利用電納斜率參數表示Hairpin濾波器………………………………..50
4-2-3 Hairpin濾波器之設計流程……………………………………………53
4-2-4 擬模與量測……………………………………………………………54
4-3 準橢圓濾波器…………………………………………………………………56
4-3-1準橢圓濾波器之原理……………………………………………………56
4-3-2擬模與量測……………………………………………………………6
4-4 三等份濾波器…………………………………………………………………65
4-4-1 三等份濾波器之原理…………………………………………………65
4-4-2 模擬與量測……………………………………………………………69
4-5 髮夾式濾波器之討論…………………………………………………………73
第五章 環型耦合濾波器
5-1 基本型環型共振腔之簡介……………………………………………………74
5-1-1 環型共振腔之等效電路………………………………………………76
5-1-2 可調變之共振腔………………………………………………………82
5-2 環型耦合濾波器………………………………………………………………84
5-2-1 基本型之帶通濾波器…………………………………………………84
5-2-2 具有傳輸零點之濾波器………………………………………………87
5-2-3 環型耦合濾波器之設計流程…………………………………………89
5-2-4 模擬與量測……………………………………………………………92
5-3 環型耦合濾波器之討論………………………………………………………99
第六章 結論與未來研究方向
6-1 結論……………………………………………………………………………100
6-2 未來研究方向…………………………………………………………………101
參考文獻……………………………………………………………………………102
附錄
附錄 A 濾波器之推導………………………………………………………… 105
附錄 B MATLAB 模擬程式………………………………………………113
參考文獻 [1].R. Ludwig, and P. Bretchko,”RF Circuit Design Theory and Applications,” book, 1995
[2].G. Gonzales,”Microwave Transistor Amplifiers Analysis and Design,” Book, 1998
[3].羅日隆, “使用0.18 um CMOS 之 2GHz 低相位雜訊壓控振盪器,” 碩士論文, 國立東華大學,2003
[4].B. Razavi,”RF Microelectronics,” book, University of California, 1998
[5].S. M. Wu, R. Y. Liu, and W. L. Chen,”A 5.8 GHz High-Efficient Low Power Phase Noise CMOS VCO for IEEE 802.11a,” IEEE International Workshop on Chip for Real –Time Applications, vol. 30, pp. 94-97, July. 2003
[6].Y. K. Chu, and H. R. Chuang, ”A Fully Integrated 5.8 GHz U-NII Band 0.18 um CMOS VCO,” IEEE Microwave and Wireless Components Letters, vol. 13, pp. 287-289, July. 2003
[7].C. Y. cha, and S. G. Lee,”A Complementary Colpitts Oscillator in CMOS Technology,” IEEE Transactions on Microwave Theory and Techniques, vol. 3, pp. 881-887, March. 2005
[8].D. Baek, J. Kim, and S. Hong, ”A Dual-Band (13 / 22 GHz) VCO Based on Resonant Mode Switching,” IEEE Microwave and Wireless Components Letters, vol. 13, pp. 443-445, October. 2003
[9].J. G. Kim, D. H. Beak, S. Jeon, J. W. Park, and S. C. Hong,”A K-Band InGaP/GaAs HBT Balanced MMIC VCO,” IEEE Microwave and Wireless Components Letters, vol. 13, pp. 478-480, November. 2003
[10].J. G. Kim, D. H. Beak, S. Jeon, J. W. Park, and S. Hong,”A 60 GHz InGaP/GaAs HBT Push-Push MMIC VCO,” IEEE MTT-S International Microwave Symposium Digest, vo1. 2, pp. 885-888, June. 2003
[11].劉偉正, “ 應用於ISM與Ka頻段之射頻收發機前端電路研製,” 碩士論文 , 2004
[12].Y. G. Kim, H. S. Kim, J. H. Bae, J. H. Oh, and C. W. Kim,”Fully Integrated Differential VCO with Buffer Amplifier Using 0.35 um SiGe BiCMOS for C-Band Wireless RF Transceiver,” Radio and Wireless Conference, pp. 297-300, August. 2003
[13].Y. Eo, K. Kim, and B. Oh,”Low Noise 5 GHz Differential VCO Using InGaP/GaAs HBT Technology,” IEEE Microwave and Wireless Components Letters, vol. 13, pp 259-261, July. 2003
[14].M. Da, Y. H. Cho, and H. Wang,”A 5 GHz Low Phase Noise Differential Colpitts CMOS VCO,” IEEE Microwave and Wireless Components Letters, vol. 15, pp. 327-329, May. 2005
[15].楊建中, “ 化合物半導體(砷化鎵)產業,” 期刊, 台灣工業銀行, 5 2003
[16].C. H. Lee, A. Sutono, and J. Laskar,”Development of a High-Power and High -Efficiency HBT MMIC VCO,” Radio and Wireless Conference, pp. 157-160, August. 2001
[17].莊惠如,”射頻通訊電路設計,”通訊教改書, 國立成功大學, 1999
[18].G. Vendelin, A. Pavio, and U. L. Rhode,”Microwave Circuit Design Using Linear and Nonlinear Techniques,” Wiley-Interscience, 1990
[19].G. D. Vendelin,”Design of Amplifiers and Oscillators by the S Parameter Method,” Wiley-Interscience, 1982
[20].P. Y. Chen, Z. M. Tsai, S. S. Lu, and H. Wang,”An Ultra Low Phase Noise W-Band GaAs-Based PHEMT MMIC CPW VCO,” European Microwave Conference, vol. 2, pp. 503-506, October. 2003
[21].A. Boudiaf, M. Ahdjoudj, and P. Pouvil,”Low Phase-Noise PHEMT -Based MMIC VCOs for LMDS Applications,” IEEE MTT-S International Microwave Symposium Digest, vol. 3, pp. 1559-1561, May. 2001
[22].B. Piernas, K. Nishikawa, and K. Araki,”A Compact and Low -Phase-Noise Ka-Band PHEMT-Based VCO,” IEEE Transactions Microwave Theory and Techniques, vol. 51, pp. 778-783, March. 2003
[23].J. Portilla, J. P. Pascua, and E. Artal,”Low-Noise Monolithic Ku-Band VCO Using Pseudomorphic HEMT Technology,” IEEE Microwave and Guided Wave Letters, vol. 7, pp. 380-382, November. 1997
[24].Y. Yamauchi, H. Kamitsuna, M. Muraguchi, and K. Osafune,”A 15 GHz Monolithic Low Phase Noise VCO Using AlGaAs /GaAs HBT,” Technical Gallium Arsenide Integrated Circuit Symposium Digest, pp. 259-262, October. 1991
[25].N. L. Wang, and W. J. Ho,” X-Band HBT VCO with High-Efficiency CB Buffer- Amplifier,” IEEE Solid-State, vol. 27, pp. 255-258, October. 1991
[26].S. Kudszus, W. H. Haydl, M. Neumann, A. Bangert, and A. Hulsmann,” Sub-Harmonically Injection Locked 94 GHz MMIC HEMT Oscillator Using Coplanar Technology.” IEEE MTT-S International Microwave Symposium Digest, vol. 3, pp. 1585-1588, June.1998
[27].D. M. Pozar,”Microwave Engineering,” book, University of Massachusetts at Amherst, 2000
[28].Y. Di, P. Gardner, P. S. Hall, and H. Ghafouri-Shiraz,”Multiple-Coupled Microstrip Hairpin-Resonator Filter,” IEEE Microwave and Wireless Components Letters, vol.13, pp. 532-534, December. 2003
[29].J. S. Wong,”Microstrip Tapped-Line Filter Design,” IEEE Transactions on Microwave Theory and Techniques, vol. 27, pp. 44-50, January. 1979
[30].S. Ohshima, T. Tomiyama, T. Kimpara and T. Sato,” Design and Fabrication of Superconducting Compact Filters,” Asia Microwave Conference, vol. 3, pp. 821-824, December. 1999
[31].蕭安廷,”精緻型耦合方形迴路與髮夾梳型高溫超導微波帶通濾波器,” 碩士論文, 2002
[32].Jia-Shen G. Hong, and M. J. Lancaster,”Microstrip Filters for RF/Microwave Applications,” book, Texas A&M University, 2003
[33].C. C. Yang, and C. Y. Chang,”Microstrip Cascade Trisection Filter,” IEEE Microwave and Guided Wave Letters, vol. 9, pp. 271-273, July. 1999
[34].Kai Chang,” Microwave Ring Circuits and Antennas,” book, New York, 1996
[35].林奐衡,”微波濾波器採用電感耦合網路並具有可選擇之傳輸零點之設計方法與研究,” 碩士論文, 2003
[36].F. Falcone, F. Martin, J. Bonache, R. Marques, and M. Sorolla,”Left Handed Coplanar Waveguide Band Pass Filters Based on Bi-layer Split Ring Resonators,” IEEE Microwave and Wireless Components Letters, vol. 14, pp. 10-12, January. 2004
[37].F. Falcone, F. Martin, J. Bonache, R. Marques, and M. Sorolla,”Miniaturized Coplanar Waveguide Stop Band Filters Based on Multiple Tuned Split Ring Resonators,” IEEE Microwave and Wireless Components letters, vol. 13, pp. 511-513, December. 2003
[38].F. L. Lin, and R. B. Wu,”Comparative Performance of Three Different CPW Band-Pass Filters,” IEEE MTT-S International Microwave Symposium Digest, vol. 2, pp. 813-816, June. 1997
[39].K. Hettak, N. Dib, A. F. Sheta, and S. Toutain,”A Class of Novel Uniplanar Series Resonators and Their Implementation in Original Applications,” IEEE Transactions on Microwave Theory and Techniques, vol. 46, pp. 1270-1276, September. 1998
[40].B. S. Virdee, and C. Grassopoulos,”Folded Ring Microstrip Filter,” European Microwave Conference, vol, 1, pp. 151-154, October. 2003
指導教授 邱煥凱(Hwann-Kaeo Chiou) 審核日期 2005-7-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明