博碩士論文 105552012 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:50 、訪客IP:3.17.175.191
姓名 鄭鼎翰(Tin-Han Cheng)  查詢紙本館藏   畢業系所 資訊工程學系在職專班
論文名稱 基質輔助雷射脫附飛行時間式串聯質譜儀 微生物抗藥性資料視覺化工具
(A microorganism resistance data visualized tool using Matrix-Assisted Laser Desorption Ionization-Time of Flight)
相關論文
★ 應用嵌入式系統於呼吸肌肉群訓練儀之系統開發★ 勃起障礙與缺血性心臟病的雙向研究: 以台灣全人口基礎的世代研究
★ 使用穿戴式裝置分析心律變異及偵測心律不整之應用程式★ 建立一個自動化分析系統用來分析任何兩種疾病之間的關聯性透過世代研究設計以及使用承保抽樣歸人檔
★ 青光眼病患併發糖尿病,使用Metformin及Sulfonylurea治療得到中風之風險:以台灣人口為基礎的觀察性研究★ 利用組成識別和序列及空間特性構成之預測系統來針對蛋白質交互作用上的特殊區段點位進行分析及預測辨識
★ 新聞語意特徵擷取流程設計與股價變化關聯性分析★ 藥物與疾病關聯性自動化分析平台設計與實作
★ 建立財務報告自動分析系統進行股價預測★ 建立一個分析疾病與癌症關聯性的自動化系統
★ 基於慣性感測器虛擬鍵盤之設計與實作★ 一個醫療照護監測系統之實作
★ 應用手機開發手握球握力及相關資料之量測★ 利用關聯分析全面性的搜索癌症關聯疾病
★ 全面性尋找類風濕性關節炎之關聯疾病★ 利用機器學習法估算台灣無測站區域之PM2.5濃度
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 近年來,隨著質譜儀在各醫療機構的普遍應用,在大型的醫療機構都已經累積了數量可觀的資料,但是目前能使用質譜儀資料的軟體皆來自於質譜儀的廠商,除了高額的軟體授權費之外,也只能使用廠商提供的方式來使用資料。因此,在本研究中,我們與長庚醫療財團法人合作,建立了一個資料視覺化的工具,能讀入現有的大量歷史資料或是新產生的資料,並產生視覺化的資料圖表,也能與不同的分類模型結合,訓練分類模型來預測抗藥性結果,並將結果資料整合顯示於圖表之中,使臨床或是研究人員能更容易觀察大量的資料。
摘要(英) In recent years, as matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) widely used in the field of biomedical, most of the medical care institutions has accumulated quite amount of data, but for now, the only way to access data of MALDI-TOF is through the software packaged by MALDI-TOF company. Except the high license fee charged, we can only use the data in limited way that the company implement in the software. Based on the fact we mention above, we cooperate with Chang Gung Memorial Hospital, and develop a program that can present visualized resistance data from MALDI-TOF and is able to combine with different feature selection algorithms to predict resistance result, let our users easily compare between different data and different features. With our own designed program, we can adjust our user interface, set parameters or extend functions to fit our own user. And as our closely cooperation with our users, we can handle our user’s feedback more efficiently than the original software.
關鍵字(中) ★ 值譜儀
★ 資料視覺化
關鍵字(英) ★ MALDITOF
★ data visualize
論文目次 摘要 i
Abstract ii
Table of Contents iii
List of Figures iv
List of Tables v
Chapter 1 Introduction 1
1.1 Introduction 1
1.2 MALDI-TOF 1
1.3 Related Works 1
1.4 Motivation & Goal 2
Chapter 2 Materials and Methods 3
2.1 Dataset 3
2.2 Tool Design 4
2.3 Data Process 5
2.4 Diagram Presentation 7
2.5 Classification Model 8
2.6 Adaptation to Python 9
Chapter 3 Results 10
3.1 Data Visualize 10
3.2 Classification Model 19
3.3 Comparison 23
Chapter 4 Conclusions 26
4.1 Conclusions 26
4.2 Future Works 26
References 27
參考文獻 1. Wang, H.-Y., et al., Application of a MALDI-TOF analysis platform (ClinProTools) for rapid and preliminary report of MRSA sequence types in Taiwan. PeerJ, 2018. 6: p. e5784.
2. Wang, H.-Y., et al., A new scheme for strain typing of methicillin-resistant Staphylococcus aureus on the basis of matrix-assisted laser desorption ionization time-of-flight mass spectrometry by using machine learning approach. PLOS ONE, 2018. 13(3): p. e0194289.
3. Lévesque, S., et al., A Side by Side Comparison of Bruker Biotyper and VITEK MS: Utility of MALDI-TOF MS Technology for Microorganism Identification in a Public Health Reference Laboratory. PLOS ONE, 2015. 10(12): p. e0144878.
4. Deak, E., et al., Comparison of the Vitek MS and Bruker Microflex LT MALDI-TOF MS platforms for routine identification of commonly isolated bacteria and yeast in the clinical microbiology laboratory. Diagnostic Microbiology and Infectious Disease, 2015. 81(1): p. 27-33.
5. Jamal, W., M. John Albert, and V. O Rotimi, Real-time comparative evaluation of bioMerieux VITEK MS versus Bruker Microflex MS, two matrix-assisted laser desorption-ionization time-of-flight mass spectrometry systems, for identification of clinically significant bacteria. Vol. 14. 2014. 289.
6. Pedregosa, F., et al., Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res., 2011. 12: p. 2825-2830.
7. Stephens, D. and M. Diesing, A Comparison of Supervised Classification Methods for the Prediction of Substrate Type Using Multibeam Acoustic and Legacy Grain-Size Data. PLOS ONE, 2014. 9(4): p. e93950.
8. Akar, Ö. and O. Gungor, Classification of Multispectral Images Using Random Forest Algorithm. Vol. 1. 2012. 105-112.
9. Bijalwan, V., et al., KNN based Machine Learning Approach for Text and Document Mining. Vol. 7. 2014.
指導教授 洪炯宗(Jorng-Tzong Horng) 審核日期 2019-8-8
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明