博碩士論文 92523054 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:79 、訪客IP:18.222.200.143
姓名 白禮智(Li-Chih Pai)  查詢紙本館藏   畢業系所 通訊工程學系
論文名稱 覆晶式Ka頻段超外差發射機前端電路之研製
(Implementation of Flip-Chip Superheterodyne Transmitter Front-End Circuits for Ka Band Applications)
相關論文
★ 應用於筆記型電腦數位電視單極天線之研製★ 應用於數位機上盒與纜線數據機之電纜多媒體傳輸標準多工濾波器
★ 印刷共面波導饋入式多頻帶與超寬頻天線設計★ 微波存取全球互通頻段前向匯入式功率放大器與高效率Class F類功率放大器暨壓控振盪器電路之研製
★ 應用於矽基功率放大器與混頻器之傳輸線型變壓器研究★ 應用於V-頻段射頻收發機前端電路之低功耗源極注入式混頻器之研製
★ 應用積體電路上方後製程與整合被動元件於互補式金氧半導體製程之系統封裝研究★ 應用fT-倍頻電路架構於毫米波壓控振盪器與注入鎖定除頻器之研製
★ 應用傳輸線型變壓器於X/K–Ka/V頻段全積體整合之寬頻互補式金氧半導體功率放大器研製★ 應用於K / V 頻段低功耗混頻器之研製
★ 應用於K/V頻段之低功耗CMOS低雜訊放大器之研究★ 應用於5-GHz CMOS射頻前端電路之低電壓自偏壓式混頻器與高線性化功率放大器之研製
★ 應用於 K 頻段射頻接收機之寬頻低功耗 CMOS 低雜訊放大器之研製★ 應用磁耦合變壓器於K頻段之低功耗互補式金氧半導體壓控振盪器研製
★ 應用於K頻段之單向化全積體整合功率放大器與應用於V頻段之寬頻功率放大器研製★ 應用於C/X頻段全積體整合之互補式金氧半導體寬頻低功耗降頻器與寬頻功率混頻器之研製
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文主要研究內容為毫米波覆晶式射頻前端發射機電路設計,電路應用的系統為Ka頻段的區域多點分散式服務系統(local multipoint distribution service)。利用WIN 0.15μm pHEMT製程研製,包含共面波導功率放大器、寬頻功率放大器、次諧波二極體混頻器以及次諧波電阻性混頻器設計。
電路經量測,共面波導功率放大器的增益為14.5 dB,輸入輸出返回損耗分別為8dB與5.4dB,1dB壓縮點輸出功率與附加功率效率為20.4 dBm與 14.1 %,最大輸出功率與功率效率增益為22.3 dBm與 19.3 %;寬頻功率放大器頻寬為19GHz至31GHz,在頻率為27.1GHz時,增益為21.6 dB,輸入輸出返回損耗分別為10dB與4dB,1 dB壓縮點輸出功率與附加功率效率為21dBm與 18.6 %,最大輸出功率與功率效率增益為23.1 dBm與 21.9 %;次諧波二極體混頻器的轉換損耗(conversion loss)在昇頻模式中為10.5dB,輸入1dB壓縮點-3dBm;而在降頻模式中為11.1dB, 輸入1dB壓縮點為1dBm;在昇頻模式中,LO-RF隔離度在所操作的頻段中皆大於19dB,而IF-RF隔離度則大於13dB;在降頻模式中,LO-IF隔離度在所操作頻段皆大於14dB,RF-IF隔離度則大於38dB;次諧波電阻性混頻器的轉換損耗為10.4dB,輸入1dB壓縮點1dBm,LO-RF隔離度在所操作的頻段中皆大於30dB,而IF-RF隔離度則大於16dB。
摘要(英) Millimeter-wave flip-chip RF front-end transmitter circuits design are the main
research of this thesis, which apply to Ka band local multipoint distribution
service(LMDS). These Ka band circuits are implemented with WIN 0.15μm pHEMT,
including coplanar waveguide power amplifier, broadband power amplifier,
sub-harmonic diode and resistive mixer designs.
The measured results of the circuit are illustrated as follows; for the coplanar
waveguide power amplifier , gain is 14.5 dB, input and output return loss are 8dB and
5.4dB, the output power and power added efficiency at the 1-dB gain compression
point are 20.4dBm and 14.1%, the maximum output power and power added
efficiency are 22.3dBm and 19.3% ; for the broadband power amplifier , bandwidth is
19GHz to 31GHz, gain is 21.6 dB at 27.1GHz, input and output return loss are 10dB
and 4dB, the output power and power added efficiency at the 1-dB gain compression
point are 21dBm and 18.6%, the maximum output power and power added efficiency
are 21.3dBm and 21.9%; for the sub-harmonic diode mixer, operating at up-converter,
the conversion loss is 10.5dB, input power at the 1-dB gain compression point is
-3dBm; operating at down-converter, the conversion loss is 11.1dB, input power at the
1-dB gain compression point is 1dBm; the LO-RF and IF-RF isolation are greater than
19dB and 13dB at up-converter operation, the LO-IF and RF-IF isolation are greater
than 14dB and 38dB at down-converter operation; for the sub-harmonic resistive
mixer, the conversion loss is 10.4 dB, input power at the 1-dB gain compression point
is 1dBm, the LO-RF and IF-RF isolation are greater than 30dB and 16dB
關鍵字(中) ★ 毫米波發射機
★ 次諧波混頻器
★ 功率放大器
關鍵字(英) ★ subharmonic mixer
★ millimeter-wave transmitter
★ power amplifier
論文目次 第一章 緒論 1
1-1 研究動機 1
1-2 研究成果 2
1-3 章節簡述 2
第二章 共面波導及覆晶技術介紹 3
2-1 前言 3
2-2 共面波導簡介 3
2-2-1 一般共面波導 4
2-2-2 背板金屬共面波導 6
2-2-3 有限接地金屬共面波導 8
2-3 覆晶組裝技術簡介 12
2-3-1 覆晶凸塊設計與製作 13
2-3-2覆晶載具設計 14
第三章 毫米波Ka頻段功率放大器設計 16
3-1 區域多點分散式服務系統簡介 16
3-2 GaAs pHEMT製程技術簡介 18
3-3 功率放大器簡介 19
3-3-1 31GHz共面波導功率放大器 20
3-3-2 電路架構及原理 21
3-3-3 設計流程 22
3-3-4 量測結果 23
3-3-5 結果討論 27
3-4 寬頻放大器 28
3-4-1 寬頻功率放大器 30
3-4-2 電路架構及原理 32
3-4-3 量測結果 35
3-3-4 結果討論 39
3-5 覆晶式共面波導功率放大器 39
3-5-1 電路架構及原理 39
3-5-2模擬結果 40
3-5-3 結果討論 44
第四章 毫米波Ka頻段次諧波混頻器設計 45
4-1混頻器簡介 45
4-1-1 混頻器分析 46
4-2二極體混頻器 48
4-2-1二極體平衡式混頻器 51
4-2-2次諧波二極體混頻器 56
4-2-3 電路架構及原理 57
4-2-4設計流程 58
4-2-5 量測結果 59
4-2-6 結果討論 66
4-3 場效電晶體電阻性混頻器 67
4-3-1 次諧波電阻性混頻器 68
4-3-2電路架構及原理 71
4-3-3設計流程 73
4-3-4量測結果 75
4-3-5 結果討論 79
4-4 覆晶式次諧波電阻性混波器 80
4-4-1 電路架構及原理 80
4-4-2模擬結果 81
4-4-3結果討論 84
第五章 結論 85
參考文獻 87
參考文獻 [1].B, Razavi., “RF microelectronics,” Prentice Hall, 1998
[2].N. S. Rainee, “Coplanar Waveguide Circuit, Components, and System,”
Wiley-Interscience, A John Wiley & Sons, Inc.,Publication
[3].D. Robertson, S. Lucyszyn, “RFIC and MMIC design and technology,”
London, Institution of Electrical Engineers, 2001
[4].S. A. Maas, “The RF and microwave circuit design cookbook,” Artech
House, 1998
[5].W. Heinrich, A. Jentzsch, G. Baumann, “Millimeter-Wave Characteristics of
Flip-Chip Interconnects for Multichip Modeules,” IEEE Trans. Microwave
Theory and Tech, vol. 46, No.12, Dec. 1998
[6].A. Tessmann, M. Riessle, S. Kudszus, H. Massler, “A flip-chip packaged
coplanar 94 GHz amplifier module with efficient suppression of parasitic
substrate effects,” IEEE Microwave and Wireless Components Letters,
vol.14 Issue 4, pp. 145-147, April 2004
[7].M. Szymanowski, S. S. Naeini, “Characterization of a flip-chip
interconnect at frequencies up to 30 GHz,” Electrical and Computer
Engineering, Canadian Conference, vol. 2, pp. 784 – 787, March 7-10, 2000
[8].A. Tessmann, W. H. Haydl, T. V. Kerssenbrock, P. Heide, S. Kudszus,
“Suppression of parasitic substrate modes in flip-chip packaged coplanar W-
band amplifier MMICs,” IEEE MTT-S IMS Digest, vol. 1, pp. 543 – 546, May
20-25, 2001
[9].T. Hirose, K. Makiyama, K Ono, T. M. Shimura, S. Aoki, Y. Ohashi, S.
Yokokawa, Y. Watanabe, “A flip-chip MMIC design with coplanar waveguide
transmission line in the W-band,” IEEE Trans. Microwave Theory and Tech.,
vol 46, Issue 12, pp. 2276 – 2282, Dec. 1998
[10].K. Chang, I. Bahl, V. Nair, “RF and Microwave Circuit and Component
Design for Wireless Systems,” John Wiley, New York, December 2001
[11].I. Bahl, P. Bhartia, “Microwave Solid State Circuit Design,” John Wiley
& Sons, Inc.,Publication, 2003
[12].J. Scheilenberg, D. K. Hien, “A push-pull power MMIC operating at K/Ka-
band frequencies” IEEE MTT-S IMS Digest, vol. 3, pp.971 – 974, June 13-
19, 1999
[13].A. Bessemoulin, H. Massler, A. Hulsmann, M. Schlechtweg, “1-Watt Ka-band
coplanar high power MMIC amplifiers using 0.15-μm GaAs PHEMTs,” GaAs IC
Symposium, 22nd Annual, pp. 227 – 230, Nov. 5-8, 2000
[14].B. Y. Banyamin, M. Berwick, “Analysis of the performance of four-
cascaded single-stage distributed amplifiers,” IEEE Trans. Microwave
Theory and Tech., vol. 48 , Issue 12 , Dec. 2000
[15].T. Quach, P. Watson, W. Okamura, E. Kaneshiro, G. A. Aitken, T. Block, J.
Eldredge, T. Jenkins, L. Kehias, A. Oki, D. Sawdai, R. Welch, R. Worley,
“Broadband Class-E Power Amplifier for Space Radar Application,” GaAs IC
Symposium Digest, 23rd Annual, pp. 209 – 213, Oct. 21-24, 2001
[16].N. L. Wang, W. J. Ho, J. A. Higgins, “4W, 7-12GHz, Compact CB HBT MMIC
Power Amplifier,” IEEE GaAs IC Symposium Digest, 14th Annual, pp. 301-
304, Oct. 4-7, 1992
[17].K. Johnson, A. Lum, S. Nelson, E. Reese, K. Salzman, “High efficiency
broadband power amplifier MMIC,” IEEE Microwave and Millimeter-Wave
Monolithic Circuits Symposium Digest, pp.43-45, June 1-3, 1992
[18].Y. G.. Kim, S. J. Maeng, J. H. Lee, C. S. Park, “A PHEMT MMIC broad-band
power amplifier for LMDS,” IEEE Radio and Wireless Conference, RAWCON
98, Aug. 9-12 , 1998
[19].S. A. Maas, “A GaAs MESFET Mixer with Very Low Intermodulation,” IEEE
Trans. Microwave Theory and Tech., vol. 35, Issue 4, pp.425–429, Apr
1987
[20].K. L. Deng, Y. B. Wu, Y. L. Tang, H. Wang, C. H. Chen, “Broadband
monolithic GaAs-based HEMT diode mixers,” Microwave Conference, Asia-
Pacific 3-6, pp.1135-1138, Dec. 2000
[21].M. W. Chapman, S. Raman, “A 60-GHz uniplanar MMIC 4/spl times/
subharmonic mixer,” IEEE Trans. Microwave Theory and Tech., vol. 50,
Issue 11, pp.2580-2588, Nov. 2002
[22].L. Verweyen, H. Massler, M. Neumann, U. Schaper, W. H. Haydl, “Coplanar
integrated mixers for 77-GHz automotive applications,” IEEE Microwave
and Guided Wave Letters, vol. 8, Issue 1, pp.38-40, Jan. 1998
[23].H. Kanoniuk, T. H. Chu, “A 78-114 GHz monolithic subharmonically pumped
GaAs-based HEMT diode mixer,” IEEE Microwave and Wireless Components
Letters, vol. 12, Issue 6, pp. 209 – 211, June 2002
[24].K. S. Ang, “A millimeter-wave monolithic sub-harmonically pumped
resistive mixer,” APMC Digest, vol. 2, pp. 222 -225, 30 Nov.-3, Dec. 1999
[25].H. Zirath, “A subharmonically pumped resistive dual HEMT mixer,” IEEE
MTT-S IMS Digest, pp. 875-878, June 1991
[26].M. Kimishima, T. Ataka, H. Okabe, Virk, “A farmily of Q, V and W-band
monololithic resistive mixer,” IEEE MTT-S IMS Digest, pp.115-118, June
2001
[27].M. F. Lei, P. S. Wu, T. W. Huang, H. Wang, “Design and analysis of a
miniature W-band mmic subharmonically pumped resistive mixer,” IEEE MTT-
S IMS Digest, 2004
[28].M. D. Biedenbender., J.L. Lee, K.L. Tan, P.H. Liu, A. Freudenthal, D.C.
Streit, G. Luong, R. Lai, M.V. Aust, B. Allen, T. S. Lin, H. C. Yen, “A
power HEMT production process for high-efficiency Ka-band MMIC power
amplifiers,” GaAs IC Symposium Technical Digest, 15th Annual, Oct. 10-
13, 1993
指導教授 邱煥凱(Hwann-Kaeo Chiou) 審核日期 2005-7-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明