博碩士論文 106522055 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:187 、訪客IP:18.217.84.117
姓名 楊宜昌(Yi-Chang Yang)  查詢紙本館藏   畢業系所 資訊工程學系
論文名稱 基於Web之虛實融合系統機器學習建模
(Web-based Machine Learning Modeling in a Cyber-Physical System)
相關論文
★ 以IEEE 802.11為基礎行動隨意無線網路之混合式省電通訊協定★ 以范諾圖為基礎的對等式網路虛擬環境相鄰節點一致性研究
★ 行動隨意網路可調適及可延展之位置服務協定★ 同儕式網路虛擬環境高效率互動範圍群播
★ 巨量多人線上遊戲之同儕網路互動範圍語音交談★ 基於范諾圖之同儕式網路虛擬環境狀態管理
★ 利用多變量分析 之多人線上遊戲信任使用者選擇★ 無位置資訊無線感測網路之覆蓋及連通維持
★ 同儕網路虛擬環境3D串流同儕選擇策略★ 一個使用802.11與RFID技術的無所不在導覽系統U-Guide之設計與實作
★ 同儕式三維資料串流★ IM Finder: 透過即時通訊網路線上使用者找尋解答
★ 無位置資訊無線感測網路自走車有向天線導航與協調演算法★ 多匯點無線感測網路省能及流量分散事件輪廓追蹤
★ 頻寬感知同儕式3D串流★ 無線感測網路旋轉指向天線定位法
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 虛實融合系統(Cyber-Physical System, CPS)為工業4.0(Industry 4.0)智慧製造核心系統,整合大數據(Big Data)、工業物聯網(Industrial Internet of Things, IIoT)、人工智慧(Artificial Intelligence, AI)和雲端運算(Cloud Computing)等技術使製造智慧化,透過生產參數及生產狀態資料的即時擷取、過濾、前處理、分析與分析結果的反饋,能夠提升生產效能,降低生產成本、增進生產品質及提高生產產量。機器學習(Machine Learning)為CPS中常用的資料分析技術,它是人工智慧的一個分支,旨在透過以往的大量資料找到隱藏在資料中的資料模式或知識。但一般而言,若不使用特殊工具,機器學習上必須具有些許程式設計背景才能實現。因此,本論文嘗試降低實現機器學習資料分析的門檻,以提升實作效率。
本論文以基於全球資訊網(Web)的 CPS建構輔助系統“PINE”為基礎,聚焦於設計及實作該系統之資料分析機器學習建模功能,整合PINE的網站開發框架及機器學習套件,完成機器學習建模及模型共享架構,並製作測試案例以確保所實作的功能與設計規格相符。支援的機器學習模型包括支援向量機(Support Vector Machine, SVM)、支援向量迴歸(Support Vector Regression, SVR)、深度神經網路(Deep Neural Network, DNN)及卷積神經網路(Convolutional Neural Network, CNN)等。機器學習建模功能讓使用者透過簡單的網頁操作介面即可針對資料建立機器學習分析模型,並產生分析模型架構之程式原始碼。這可降低機器學習建模相關技術之學習成本,簡化建模過程並提升建模效率;另外,分析模型共享功能可讓使用者透過瀏覽器界面上傳及下載建模之超參數、建模結果及模型之使用情境,並可透過搜尋功能讓使用者找出最適當的共享資料分析模型,節省從頭開始建模的成本。
摘要(英) The Cyber-Physical System (CPS) is critical for smart manufacturing of the Industry 4.0 vision. It integrates advanced technologies, such as Industrial Internet of Things (IIoT), Big Data, Cloud Computing, and Artificial Intelligence (AI), to improve production efficiency, reduce production costs and increase production quality. The CPS collects, preprocesses, and analyzes data of manufacturing parameters and states, and feedbacks analyzed results, which contain deep-insight information of the data, to the manufacturing system for realizing online smart control of the whole system. Machine learning plays an important role in data analysis of the CPS. Its objective is to find specific patterns or hidden knowledge in the data through analyzing a large amount of historical data. However, it takes much effort to realize data analysis using machine leaning mechanisms. This motivates us to design and implement machine learning modeling modules for a web-based CPS construction assistant “PINE”. The modules integrate PINE’s web-based CPS development framework and common machine learning packages. The supported machine learning models include Support Vector Machine (SVM), Support Vector Regression (SVR), Deep Neural Network (DNN), and Convolutional Neural Network (CNN). The modules allow users to set and select hyper-parameters for machine learning modeling through simple web interfaces. The source code related to the modeling is generated, so that users can modify it at will. Moreover, the hyper-parameter tuning process for training the model, the best model ever trained, and the model usage information (i.e., the input, output and function of the model) are kept for model reusing and sharing. By establishing metadata for models, users can even search the most appropriate model with certain functions to be applied to specific applications. Many test cases are made and tested to make sure that the implementation meets the design specifications. We believe the design and implementation of machine learning modeling can facilitate users to construct a CPS.
關鍵字(中) ★ 工業4.0
★ 智慧製造
★ 虛實融合系統
★ 全球資訊網
★ 機器學習
★ 建模
★ 測試案例
★ 支援向量機
★ 支援向量迴歸
★ 深度神經網路
★ 卷積神經網路
關鍵字(英) ★ Industry 4.0
★ Smart Manufacturing
★ Cyber-Physical System
★ Web
★ Machine Learning
★ Modeling
★ Test Cases
★ Support Vector Machine
★ Support Vector Regression
★ Deep Neural Network
★ Convolutional Neural Network
論文目次 中文摘要 I
Abstract II
致謝 III
目錄 IV
圖目錄 VI
表目錄 VIII
一、 緒論 1
1.1 研究背景與動機 1
1.2 研究目的與貢獻 3
1.3 相關技術研究 3
1.4 論文結構 4
二、 背景知識及相關研究 5
2.1 PINE 5
2.1.1 PINE簡介 5
2.1.2 PINE系統架構 5
2.2 支援向量機(Support Vector Machine) 7
2.2.1 支援向量機簡介 7
2.2.2 支援向量分類(Support Vector Classification) 7
2.2.2.1 Soft-Margin 9
2.2.2.2 多分類 10
2.2.2.3 核心函數 10
2.2.2.4 SVC超參數說明 11
2.2.3 支援向量迴歸(Support Vector Regression) 12
2.2.3.1 SVR超參數說明 13
2.3 深度學習(Deep Learning) 14
2.3.1 深度學習介紹 14
2.3.1.1 人工神經網路(Artificial Neural Network, ANN) 14
2.3.1.2 激勵函數(Activation Function) 16
2.3.1.3 反向傳播演算法(Back-Propagation Algorithm) 17
2.3.2 深度神經網路(Deep Neural Network, DNN) 18
2.3.3 卷積神經網路(Convolutional Neural Network, CNN) 19
2.4 自動機器學習(AutoML) 25
2.4.1 神經網路架構搜索(Neural Architecture Search, NAS) 25
2.4.2 Google Cloud AutoML 28
三、 研究方法 31
3.1 功能分析 31
3.1.1 功能需求 31
3.1.2 使用案例 32
3.2 功能架構與設計 34
3.2.1 機器學習建模 34
3.2.2 分析模型共享 36
3.3 功能實作 38
3.3.1 開發環境 38
3.3.2 實作成果 39
3.3.2.1 機器學習建模 39
3.3.2.1.1資料選取 39
3.3.2.1.2前處理 41
3.3.2.1.3 分析 43
3.3.2.1.4 結果呈現 45
3.3.2.2 分析模型共享 45
3.3.2.2.1 模型儲存 46
3.3.2.2.2 模型擷取 46
四、 系統測試與情境範例 47
4.1 系統測試 47
4.1.1 測試流程 47
4.1.2 測試案例步驟 49
4.1.3 測試結果 52
4.2 範例情境 54
4.2.1 情境一:焊點好壞分析模型訓練 54
4.2.2 情境二:焊點分析模型管理應用 60
五、 結論與未來展望 63
六、 參考文獻 64
參考文獻 [1] Saurabh Vaidya, Prashant Ambad, and Santosh Bhosle. "Industry 4.0–a glimpse." Procedia Manufacturing 20 (2018): 233-238.
[2] Andrew McAfee, et al. "Big data: the management revolution." Harvard Business Review 90.10 (2012): 60-68.
[3] Jayavardhana Gubbi, et al. "Internet of Things (IoT): A vision, architectural elements, and future directions." Future Generation Computer Systems 29.7 (2013): 1645-1660.
[4] Emiliano Sisinni, et al. "Industrial internet of things: Challenges, opportunities, and directions." IEEE Transactions on Industrial Informatics 14.11 (2018): 4724-4734.
[5] Stuart J. Russell, and Peter Norvig. Artificial intelligence: a modern approach. Malaysia; Pearson Education Limited, (2016).
[6] Jay Lee, Behrad Bagheri, and Hung-An Kao. "A cyber-physical systems architecture for industry 4.0-based manufacturing systems." Manufacturing Letters 3 (2015): 18-23.
[7] Jehn-Ruey Jiang. "An improved cyber-physical systems architecture for Industry 4.0 smart factories." Advances in Mechanical Engineering 10.6 (2018): 1687814018784192.
[8] Chih-Wei Hsu, Chih-Chung Chang, and Chih-Jen Lin. "A practical guide to support vector classification." (2003).
[9] Geoffrey E. Hinton, and Ruslan R. Salakhutdinov. "Reducing the dimensionality of data with neural networks." Science 313.5786 (2006): 504-507.
[10] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. "Imagenet classification with deep convolutional neural networks." Advances in Neural Information Processing Systems. (2012).
[11] Karen Simonyan, and Andrew Zisserman. "Very deep convolutional networks for large-scale image recognition." arXiv Preprint arXiv:1409.1556 (2014).
[12] SVC hyperparameters description: https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html
[13] Smola, Alex J., and Bernhard Schölkopf. "A tutorial on support vector regression." Statistics and Computing 14.3 (2004): 199-222.
[14] SVR hyperparameters description: https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVR.html
[15] Support vector machines: https://www.jeremyjordan.me/support-vector-machines/
[16] An Introduction to Deep Learning: https://blog.algorithmia.com/introduction-to-deep-learning/
[17] Neurons introduction: http://www.hkpe.net/hkdsepe/human_body/neuron.htm
[18] Convolutional Neural Network with many layers: https://www.mathworks.com/solutions/deep-learning/convolutional-neural-network.html
[19] DNN hyperparameters description: https://keras.io/layers/core/
[20] CNN hyperparameters description: https://keras.io/layers/convolutional/
[21] Frank Hutter, Lars Kotthoff, and Joaquin Vanschoren. "Automated Machine Learning-Methods, Systems, Challenges." Automated Machine Learning (2019).
[22] Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. "Neural architecture search: A survey." arXiv Preprint arXiv:1808.05377 (2018).
[23] Google Cloud AutoML: https://cloud.google.com/automl/?hl=Zh-TW
指導教授 江振瑞(Jehn-Ruey Jiang) 審核日期 2019-7-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明