參考文獻 |
[1] A. Krizhevsky, I. Sutskever, and G. Hinton, “Imagenet classification with deep convolutional neural networks,” in Proc. of Neural Information Processing Systems (NIPS), Harrahs and Harveys, Lake Tahoe, Dec.3-8, 2012.
[2] P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus, and Y. Le-Cun, “Overfeat: Integrated recognition, localization and detection using convolutional networks,” in Proc. of ICLR Conf., Banff, Canada, Apr.14-16, 2014.
[3] M. D. Zeiler and R. Fergus, “Visualizing and understanding convolutional neural networks,” in Proc. of ECCV Conf., Zurich, Switzerland, Sep.6-12, 2014, pp.818-833.
[4] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image recognition,” in Proc. of ICLR Conf., The Hilton San Diego Resort & Spa, May.7-9, 2015.
[5] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,” in Proc. of IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, Jun.7-12, 2015, pp.1-9.
[6] S. Ioffe and C. Szegedy, “Batch normalization: accelerating deep network training by reducing internal covariate shift,” in Proc. of ICML Conf. , Lille, France, Jul.7-9, 2015, vol.37, pp.448-456.
[7] R. K. Srivastava, K. Greff, and J. Schmidhuber, “Training very deep networks,” in Proc. of Neural Information Processing Systems (NIPS), Montréal, Canada, Dec.7-12, 2015.
[8] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in Proc. of IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, Jun.27-30, 2016, pp.770-778.
[9] J. Redmon and A. Farhadi, YOLOv3: An incremental improvement, Technical report, arXiv:1804.02767, 2018.
[10] K. He, X. Zhang, S. Ren, and J. Sun, “Identity mappings in deep residual networks,” in Proc. of ECCV Conf., Amsterdam, The Netherlands, Oct.11-14, 2016.
[11] A. Shah, E. Kadam, H. Shah, S. Shinde, “Deep residual networks with exponential linear unit,” International Conference on Applied Soft Computing and Communication Networks (ACN), Jaipur, India, Sep.21-24, 2016.
[12] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature hierarchies for accurate object detection and semantic segmentation,” in Proc. IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), Columbus, Ohio, Jun.23-28, 2014, pp.580-587.
[13] J. Uijlings, K. Sande, T. Gevers, and A. Smeulders, “Selective search for object recognition,” Int. Journal of Computer Vision (IJCV), vol.104, is.2, pp.154-171, 2013.
[14] R. Girshick, "Fast R-CNN," in Proc. of IEEE Int. Conf. on Computer Vision (ICCV), Santiago, Chile, Dec.11-18, 2015, pp.1440-1448.
[15] K. He, X. Zhang, S. Ren, and J. Sun, “Spatial pyramid pooling in deep convolutional networks for visual recognition,” in Proc. of ECCV Conf. , Zurich, Switzerland, Sep.6-12, 2014, pp.346-361.
[16] S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards real-time object detection with region proposal networks,” IEEE Trans. on Pattern Analysis and Machine Intelligence, vol.39, is.6, pp.1137-1149, 2016.
[17] J. Redmon, S. Divvala, R. Girshick and A. Farhadi, "You only look once: unified, real-time object detection," in Proc. of IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, 2016, pp.779-788.
[18] J. Redmon and A. Farhadi, “YOLO9000: better, faster, stronger,” in Proc. of IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, Jul.21-26, 2017, pp.6517-6525.
[19] T.-Y. Lin, P. Doll´ar1, R. Girshick, K. He, B. Hariharan, and S. Belongie, “Feature pyramid networks for object detection,” in Proc. of IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, Jul.21-26, 2017, pp.936-944.
[20] J. Dai, K. He, and J. Sun, “Convolutional feature masking for joint object and stuff segmentation,” in Proc. of IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), Boston, MA, Jun.7-12, 2015, pp.3992-4000.
[21] B. Hariharan, P. Arbel´aez, R. Girshick, and J. Malik, “Hypercolumns for object segmentation and fine-grained localization,” in Proc. of IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, Jun.7-12, 2015, pp.447-456.
[22] P. O. Pinheiro, R. Collobert, and P. Dollar, “Learning to segment object candidates,” in Proc. of Neural Information Processing Systems (NIPS), Montréal, Canada, Dec.7-12, 2015.
[23] J. Dai, K. He, Y. Li, S. Ren and J. Sun, “Instance-sensitive fully convolutional networks,” in Proc. of ECCV Conf., Amsterdam, The Netherlands, Oct.11-14, 2016.
[24] P. O. Pinheiro, T.-Y. Lin, R. Collobert, and P. Doll´ar, “Learning to refine object segments,” in Proc. of ECCV Conf. , Amsterdam, The Netherlands, Oct.11-14, 2016, vol.1, pp.75-91.
[25] J. Dai, K. He, and J. Sun, “Instance-aware semantic segmentation via multi-task network cascades,” in Proc. of IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, Jun.27-30, 2016, pp.3150-3158.
[26] Y. Li, H. Qi, J. Dai, X. Ji, and Y. Wei, “Fully convolutional instance-aware semantic segmentation,” in Proc. of IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, Jul.21-26, 2017, pp.4438-4446.
[27] J. Dai, Y. Li, K. He, and J. Sun, “R-FCN: object detection via region-based fully convolutional networks,” in Proc. of Neural Information Processing Systems (NIPS), Barcelona, Spain, Dec.5-10, 2016.
[28] K. He, G. Gkioxari, P. Dollár and R. Girshick, "Mask R-CNN," in Proc. of IEEE Int. Conf. on Computer Vision (ICCV), Venice, Italy, Oct.22-29, 2017, pp. 2980-2988.
[29] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks for semantic segmentation,” in Proc. of IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), Boston, MA, Jun.7-12, 2015, pp.3431-3440.
[30] H. Noh, S. Hong, and B. Han, “Learning deconvolution network for semantic segmentation,” in Proc. of IEEE Int. Conf. on Computer Vision (ICCV), Santiago, Chile, Dec.7-13, 2015, pp.1520-1528.
[31] N. Chigozie Enyinna, I. Winifred, G. Anthony, and M. Stephen, “Activation functions: comparison of trends in practice and research for deep learning,” arXiv:1811.03378, 2018.
[32] V. Nair and G. E. Hinton, “Rectified linear units improve restricted boltzmann machines,” in Proc. of ICML Conf. , Haifa, Israel, Jun.21-24, 2010, pp.807-814.
[33] M. Andrew L, H. Awni Y, and N. Andrew Y, “Rectifier nonlinearities improve neural network acoustic models,” in Proc. of ICML Conf. , Atlanta, GA, Jun.16-21, 2013.
|