博碩士論文 92543005 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:17 、訪客IP:3.143.168.172
姓名 李智新(Ze-Shin Lee)  查詢紙本館藏   畢業系所 通訊工程學系
論文名稱 固定式寬頻無線存取系統之基於適應性類神經模糊推論系統的功率控制
(ANFIS-based Power Control for Fixed Broadband Wireless Access Systems)
相關論文
★ 手機用之平面倒F天線設計★ 跳頻通訊干擾系統之干擾效能模擬與研析
★ 無線電交叉定位法運用於多目標之研究★ WCDMA及DVB-T之整合天線設計
★ WCDMA射頻前端設計★ 寬頻衛星通訊系統在展頻技術運用之鏈路分析研究
★ 運用SIFT特徵進行光學影像目標識別★ 多來源遙測影像融合與色差校正之研究
★ 語音關鍵詞辨識擷取系統★ 適用於筆記型電腦之WiMAX天線研究
★ 應用於凱氏天線X頻段之低雜訊放大器設計★ 適用於802.11a/b/g WLAN USB dongle曲折型單極天線設計改良
★ 應用於行動裝置上的雙頻(GPS/BT)天線★ SDH設備單體潛伏性障礙效能分析與維運技術
★ 無風扇嵌入式觸控液晶平板系統小型化之設計★ 自動化RFID海關通關系統設計
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 論文提要內容:
本研究介紹基於模糊控制(Fuzzy control)和適應性類神經模糊推論系統(ANFIS)的功率控制在固定式寬頻無線存取 (Fixed Broadband Wireless Access; FBWA) 系統的應用。區域多點分配服務 (LMDS)是固定式寬頻無線存取系統的代表性系統之一,本論文將模糊控制及結合類神經網路與模糊推論系統之適應性類神經模糊推論系統引進下鏈式功率控制,以期提供基於分碼多工存取(CDMA-based)的LMDS系統一個可以強健、有效的在晴天和雨天操作的功率控制方法。LMDS系統的操作頻率在10GHz以上的頻帶,雨衰減及同頻干擾對LMDS系統通訊品質影響很大。傳統控制系統的設計必需依據明確的數學模型來描述受控系統,對於龐雜、非線性且具有不確定性的受控系統,數學模型不但難以取得且取得的模型與真實情況往往有難以估計的誤差。若考慮的變數愈多、所需處理的問題愈複雜,則建構一個精確的受控系統的模型就愈艱困也愈容易失真。所以,在複雜環境下使用傳統控制方法往往會降低受控系統的整體效率及造成系統的不穩定性。模糊控制具有強健(robustness)、容錯(fault tolerance)及適應(adaptability)等特性、類神經系統則具有自我適應(self-adaptive)、自我學習(self-learning)及抗雜訊(anti-noise)的特性,而兩者優點與缺點具有互補的特性;適應性類神經模糊推論系統具有推論能力,可以處理高階非線性的問題,在各領域的應用已廣為大眾所接受。在LMDS系統中,雨衰減及同頻干擾等通道環境影響因素的影響模型是非線性且較難以精確的數學模型表達。因此,我們提出以模糊邏輯控制和適應性類神經模糊推論系統為基礎的兩種功率控制方案,將通道環境影響因素透過模糊邏輯控制和適應性類神經模糊推論系統來估算通道品質,並以通道品質來調整功率控制的範圍進行衰減補償,進而提昇LMDS的系統性能。模擬結果顯示,我們所提出的兩種功率控制方法,都可以提供LMDS系統一個具有強健性且有更高的頻寬效益之功率控制。
摘要(英) Abstract
The research in this dissertation introduces fuzzy-based and ANFIS-based downlink power control schemes into fixed broadband wireless access (FBWA) systems to provide the system a robust and efficient operation on both clear sky and rainy conditions. Local multipoint distribution services (LMDS) system is a representative of FBWA, operating at millimeter-wave frequencies above 10 GHz, which offers abundant available bandwidth access to multimedia service for the subscriber without demanding the extending of coaxial cable or fiber to the subscriber plant. Intercell interference and rain attenuation are the major factors limiting capacity in LMDS systems and the impacts of these factors on LMDS system are vague, uncertain, and hard to give a crisp mathematical definition. Fuzzy logic control with the advantages of robustness, fault tolerance, and adaptability can deal with the uncertain problem. Neural network has the significant self-adapting, self-learning and anti-noise characteristics, in which a desired input-output mapping can be obtained by learning a lot of training data. Moreover, the ANFIS system integrates neural network into fuzzy inference system can automatically learn a proper network structure and a set of parameters, simultaneously. Hence, we propose fuzzy-based and ANFIS-based power control schemes, in which fuzzy logic control and ANFIS are employed to evaluate the channel quality by using the environment factors to be as the input variables, and then channel quality is applied to adjust the power control region. Presented and analyzed are fuzzy-based and ANFIS-based downlink power control schemes to show that the proposed power control schemes are appropriate for improving the performance of CDMA-based LMDS systems and can provide the system a robust and efficient operation both on clear sky and rainy conditions.
關鍵字(中) ★ 寬頻無線存取系統
★ 適應性類神經模糊推論系統
★ 功率控制
關鍵字(英) ★ Broadband Wireless Access Systems
★ ANFIS
★ Power Control
論文目次 論文提要內容 i
Abstract iii
誌 謝 iv
CONTENTS v
Figure List vii
Table List ix
Chapter 1 Introduction 1
1.1 Background 4
1.2 Motivation 10
1.3 Contributions of Dissertation 11
1.4 Organization 12
Chapter 2 Broadband Wireless Access Systems 13
2.1 Standards and Specifications for Broadband Wireless Access 14
2.2 Radio Propagation 16
2.2.1 Path loss 16
2.2.2 Interference 17
2.2.3 Rain attenuation 19
2.2.4 Cross-polarization discrimination (XPD) 21
2.3 Overview of LMDS 22
2.4 Multiple Access Technologies in LMDS Systems 24
2.4.1 TDMA-based LMDS systems 25
2.4.2 CDMA-based LMDS systems 33
2.5 Capacity Enhancement Methods 37
2.5.1 Frequency reuse 38
2.5.2 Modulation 38
2.5.3 Power control 39
Chapter 3 Performance Analysis of LMDS Systems 45
3.1 System Model 45
3.2 The Definitions of Performance Criteria 50
3.3 Performance Analysis 51
3.3.1 The effects of the TS antenna beamwidth 52
3.3.2 The effects of number of users in each sector 55
3.3.3 The effects of rain rate 58
3.4 Summary 61
Chapter 4 Adaptive Neuro-Fuzzy Inference System 63
4.1 Fuzzy Logic Model 64
4.1.1 The concept of fuzzy set 66
4.1.2 Fuzzy if-then rules 77
4.1.3 The structure of fuzzy controller 78
4.1.4 The process of fuzzy controller design 83
4.2 Neural Network 88
4.2.1 Back propagation neural network 89
4.2.2 Radial basis function neural network 94
4.3 Adaptive Neuro-Fuzzy Inference System 95
4.3.1 Overview of ANFIS 95
4.3.2 ANFIS architecture 96
4.3.3 Hybrid learning rule 99
Chapter 5 Downlink Power Control for CDMA-based LMDS Systems 101
5.1 Downlink CDMA–based LMDS System Model 102
5.2 Distance-Based Power Control 104
5.2.1 Power reduction function 105
5.2.2 Comparison of DBPC and without PC 106
5.2.3 Transmitting power decision 107
5.3 Fuzzy-Based Power Control 110
5.3.1 Fuzzy logic control 110
5.3.2 Fuzzy-based power control scheme 115
5.4 ANFIS-based Power Control 120
5.5 Simulation Results and Discussion 127
Chapter 6 Conclusions 130
References 132
參考文獻 References
[1] P. B. Papazian, G. A. Hufford, R. J. Achatz, and R. Hoffman, “Study of the local multipoint distribution service radio channel,” IEEE Transactions on Broadcasting, vol. 43, no. 2, pp. 175–184, 1997.
[2] D. A. Gray, “A broadband wireless access system at 28 GHz,” Proc. NIST–Cosponsored Conf. on Wirel. Commun., Boulder, CO, pp. 1–7, 11–13 Aug. 1997.
[3] H. Sari, “Trends and challenges in broadband wireless access,” Proc. Symposium on communications and vehicular Technology SCVT-2000, pp. 210–214, 19 Oct. 2000.
[4] G. Iacovoni and D. Pierotti, “Cell capacity of LMDS systems in typical traffic scenarios,” IEEE Communications Magazine, pp.122-129 Apr. 2005.
[5] D. Grace, N.E. Daly, T.C. Tozer, A. G. Burr, and D. A. J. Pearce, “Providing multimedia communications services from high altitude platforms,” Int. J. Satellite Communications, vol. 19, pp. 559-580, 2001
[6] D. Grace, N.E. Daly, T.C. Tozer, and A. G. Burr, “LMDS from high altitude aeronautical platforms services from high altitude platforms,”
[7] A. D. Panagopoulos, P.-D. M. Arapoglou, J. D. Kanellopoulos, and P. G. Cottis, “Intercell radio interference studies in broadband wireless access networks, ” IEEE Transactions on Vehicular Technology, vol. 56, pp. 3-12, Jan. 2007.
[8] A. D. Panagopoulos, P. V. Skouloudakis, and P. G. Cottis, “Quality of service of broadband fixed wireless access QPSK channels interfered by adjacent terrestrial links, ” IEEE Transactions on Antenna and Propagation Technology, vol. 564, pp. 3317-3326, Nov. 2006.
[9] P.-D. M. Arapoglou, A. D. Panagopoulos, J. D. Kanellopoulos, and P. G. Cottis, “Intercell radio interference studies in CDMA-based LMDS networks,” IEEE Trans. Anten. & Propag., vol. 53, no. 8, pp. 2471–2479, Aug. 2005.
[10] A. D. Panagopoulos, V. S. Papanikolaou, J. E. Papoutsis, G. Chatzarakis, J. D. Kanellopoulos, and P. G.. Cottis, “A new coverage predicition method for local multipoint distribution systems,” 2003 The Institute of Electrical Engineer Printed and Publication by the IEE, pp. 437-440, 2003.
[11] S. Usla and L. Tekin, “Path loss due to rain fading and precipitation in 26 GHZ LMDS system: consideration of implementation in Turkey,” 13th Int.Crimean conference “Microwave & Telecommunication Technology”, Sevastopol Ukraine, pp. 68-72, 8-12, Sep., 2003.
[12] K. S. Chen and C.-Y. Chu, “A propagation study of the 28 GHZ LMDS system performance with M-QAM modulations under rain fading,” progress in electromagnetics research, PIER 68, pp. 35-51, 2007.
[13] IEEE 802.16: Technical specifications for broadband wireless access in licensed frequency bands between 10 and 66 GHz.
[14] IEEE 802.16a: These specifications cover both licensed and license-exempt frequency bands between 2 and 11 GHz.
[15] W. Zang and N. Moayeri, “Power-Law Parameters of rain specific attenuation,” IEEE 802.16c Project for IEEE 802.16 Broadband Wireless Access Working Group, pp.1-8, Nov. 1, 1999.
[16] B. Fong, N. Ansari, A. C. M. Fong, G. Y. Hong, and P. B. Rapajic, “On the scalability of fixed broadband wireless access network deployment,” IEEE Radio Communications, pp. S12-S18, Sep. 2004.
[17] I. Koffman and V. Roman, “Broadband wireless access soluctions based on OFDM access in IEEE 802.16,” IEEE Communications Magazine. pp. 96-103, Apr, 2002.
[18] ETSI HIPERACCESS: Standardization for broadband wireless access at millimeter-wave bands with strong emphasis on the 42 GHz band.
[19] ETSI HIPERMAN: Licensed frequency bands between 2 and 11 GHz.
[20] Z. Shelby and P. Mahonen, “Wireless internet over LMDS,” Proc. Internet Technologies and services, First IEEE/ Popov workshop, 1999.
[21] J. A. Zornoza, R. Leberer, J. A. Encinar, and W. Menzel, “Folded multilayer microstrip reflectarray with shaped pattern,” IEEE Trans. on antenna and propagation, vol. 54, no. 2, pp. 510-518, Feb. 2006.
[22] M. Arrebola, J. A. Encinar, Y. Alvarez, and L.-H. Fernando, “Design and evaluation of a three-beam LMDS central station antenna using reflectarrays,” IEEE MELECON, Benalmadena (Malaga), Spain, May 16-19, 2006.
[23] A. Nordbotten, “LMDS systems and their application,” IEEE communications Magazine, pp.150-154, Jun. 2000.
[24] A. J. Viterbi, A. M. Viterbi, and E. Zehavi, “Other-cell interferences in cellular power controlled CDMA,” IEEE Trans. on Communications, vol. 42, no. 2/3/4, Feb./Mar./Apr. 1994.
[25] H. Stellakis, A. Giordano, A. Aksu, and W. Biagini, “Other cell interference and capacity of power controlled CDMA in wireless fixed access networks,” IEEE 1998
[26] S. S. Kolahi, “Other-cell interferences of power controlled CDMA systems,” Proc. IEEE ICPWC 2002, pp. 319-321, 2002.
[27] D. A. Gray, “Optimal Hub deployment for 28 GHz LMDS systems,” Proc. NIST–Cosponsored Conf. on Wirel. Commun., Boulder, CO, pp. 1–7, 11–13 Aug. 1997.
[28] H. Sari, “Broadband radio access to homes and businesses: MMDS and LMDS,” Comput. Netw., vol. 31, pp. 379–393, 1999.
[29] H. Sari, “Some design issues in Local Multipoint Distribution Systems,” Proc. International Symposium on Signals, Systems, and Electronics, 1998, pp. 13 –19.
[30] D. Niyato and E. Hossain, “A Queuing-Theoretic and optimization-based model for radio resource management in IEEE 802.16 Broadband Wireless Networks,” IEEE Trans. on computer, vol. 55, no. 11, pp. 1473-1488, Nov. 2006.
[31] D. C. Cox, “Cochannel interference considerations in frequency reuse small-coverage- area radio systems,” IEEE Trans. on communications, vol. COM-30, no. 1, pp. 135-142, Jan. 1982.
[32] S. Q. Gong and D. Falconer, “Cochannel interference in cellular fixed broadband access systems with directional antennas,” Wirel. Pers. Commun., vol. 10, no. 1, pp. 103–117, Jun. 1999.
[33] S. Farahvash and M. Kavehrad, “Assessment of cochannel interference in fixed wireless cellular systems,” Proc. Radio and Wireless Conference, pp. 13 –16, 1999.
[34] F.-T. Wang and M.-K. Tsay, “Assessment of co-channel interference in fixed wireless cellular system operating at Ka band,” Proc. APMC 2001, pp. 605-608, Taipei, Taiwan, 2001.
[35] S. Farahvash and M. Kavehrad, “Co-channel interference assessment for line-of-sight and nearly line-of-sight Millimeter-waves Cellular LMDS architecture,” International Journal of wireless information networks, vol. 7, no. 4, pp. 197-210, 2000.
[36] B. C. Jones and D. J. Skellern, “Derivation of cochannel and adjacent channel reuse ratio distributions in DCA cellular systems,” IEEE Transactions on Vehicular Technology, vol. 49no. 1, pp. 50-62, 2000.
[37] G. Bauer and R. Jakoby, “Analysis and estimation of Line-of-Sight coverage in urban areas for fixed broadband wireless,” Proc. 10th European Conference on Wireless Technology, PP. 229-232, Munich Germany, Oct. 2007.
[38] R. Duhamel, “Local multipoint distribution service (LMDS) cell sizing and availability,” IEEE 802.16sc IEEE 802.16 Broadband Wireless Access Working Group, pp. 1-10, 1999.
[39] C.-H. Lee, B.-Y. Chung and S.-H. Lee, “Dynamic modulation scheme in consideration of cell interference for LMDS,” Proc. Int. Conf. on Commun. Tech., vol. 2, Beijing, China, pp. S38–8–1–S38–8–5, Oct. 1998.
[40] R. Bose, “Improving capacity in LMDS networks using trellis-coded modulation,” EURASIP Journal on Wireless Communications and Networking, vol. 2, pp. 365–373, 2004.
[41] M.-K. Tsay, Z.-S Lee, J.-J. Cyue, and C.-H Liao, “Rate compatible punctured turbo code for LMDS systems,” IEEE TENCON conf. IEEE Region 10, Nov. 2007.
[42] C. Novák, A. Tikk, and J. Bitó, “Code sectoring methods in CDMA-based broadband point-to-multipoint networks.” IEEE microwave and wireless components letters, vol. 13, pp. 320-322, 2003.
[43] C. Sinka and J. Bitó, “Site diversity against rain fading in LMDS systems,” IEEE Microwave and Wireless Components Letters, vol. 13, pp. 317-319, 2003.
[44] A. D. Panagopoulos, P.-D. M. Arapoglou, G. E. Chatzarakis, J. D. Kanellopoulos, and P. G. Cottis, “LMDS diversity systems: A new performance model incorporating stratified rain,” IEEE Commun. Letters, vol. 9, no. 2, pp.145-147, Feb. 2005.
[45] H. Sari, “A multimode CDMA with reduced intercell interference for broadband wireless networks,” IEEE J. Select. Areas Commun., vol. 19, no.7, pp. 1316–1323, Jul. 2001.
[46] H. Sari, “A Multimode CDMA scheme with reduced intercell interference for LMDS networks,” Proc. Broadband Communications Conference, pp. 307 -312, 2000.
[47] H. Sari, F. Vanhaverbeke, and M. Moeneclaey, "Extending the capacity of multiple access channels," IEEE Communications Magazine, vol. 38, no. 1, pp 74-82, Jan. 2000.
[48] H. Halbauer, P. Jaenecke, and H. Sari, “An analysis of code–division multiple access for LMDS networks,” Proc. 7th European Conf. Fixed Radio Syst. and Netw., pp. 173–180, Sep. 2000.
[49] M. K. Tsay and F. T. Wang, “Cellular architecture on CDMA-based LMDS,” Proc. Third Int. Symp. CSNDSP, Staffordshire, U.K., Jul. 2002.
[50] P. Mahonen, A. Jamin, T. Sarrinen, Z. Shelby, L. Munoz, and T. Sukuvaara, “Two-layer LMDS system architecture: DAVIC-based approach and analysis,” Wireless communications and mobile computing, vol. 2, pp.319-338, 2002.
[51] P. B. Papazian and G. A. Hufford, “Time variability and depolarization of the local multipoint distribution service radio channel,” Proc. Wireless communications conference, pp. 8-11, 1997.
[52] G. Bauer, R. Bose, and R.Jakoby, “Three-dimensional interference investigations for LMDS networks using an urban database,” IEEE Trans. on antennas and propagation, vol. 53, no. 8, pp. 2464- 2470, Aug. 2005.
[53] G. Bauer, R. Bose, and R. Jakoby, “Two-dimensional line of sight interference analysis of LMDS networks for the downlink and uplink,” IEEE Trans. on Antennas and Propagation, vol. 52, no. 9, pp. 2464-2473, Sep. 2004.
[54] W. C. Y. Lee, “Overview of cellular CDMA,” IEEE Trans. Veh. Technol., vol. 40, no. 2, pp. 291–302, May 1991.
[55] F. Simpson and J. M. Holtzman, “Direct sequence CDMA power control, interleaving, and coding,” IEEE Journal Select. Areas Commun., vol.11, no. 7, pp. 1085-1094, Sept.1993.
[56] R. R. Gejji, “Forward–link–power control in CDMA cellular systems,” IEEE Trans. Veh. Technol., vol. 41, no. 4, pp. 532–536, Nov. 1992.
[57] M. Zorzi, “Simplified forward–link power control law in cellular CDMA,” IEEE Trans. Veh. Technol., vol. 43, no. 4, pp. 1088–1093, Nov. 1994.
[58] T.-H. Lee, J.-C. Lin, and Y.T. Su, “Downlink power control algorithms for cellular radio systems,” IEEE Trans. on Vehicular Technology, vol.44, no. 1, pp. 89-94, Feb. 1995.
[59] D. Kim, “Downlink power allocation and adjustment for CDMA cellular systems,” IEEE communications Letters, vol.1, no. 4, pp. 96-98, Jul. 1997.
[60] D. Kim, “A simple algorithm for adjusting cell-site transmitter power in CDMA cellular systems,” IEEE Trans. on Vehicular Technology, vol.48, no. 4, pp. 1092-1098, Jul. 1997.
[61] L. Nuaymi, P. Godlewski, and X. Lagrange, “Power allocation and control for the downlink in cellular CDMA networks,” Proc. 12th IEEE Int. Symp. PIMRC, vol.01 pp. c–29–c¬–31. San Diego, CA 2001.
[62] W.-M. Tam and F. C. M. Lau, “Analysis of power control and its imperfections in CDMA cellular systems,” IEEE Trans. Veh. Technol., vol. 48, no. 2, pp. 1706–1717, Sep. 1999.
[63] H.-X. Li and H. B. Gatland, “A new methodology for designing a fuzzy logic controller,” IEEE Trans. Syst., Man, Cybern., vol. 25, no. 3, pp. 505–512, Mar. 1995.
[64] P.-R. Chang and B.-C. Wang, “Adaptive fuzzy power control for CDMA mobile radio systems,” IEEE Trans. Veh. Technol., vol. 45, no. 2, pp. 225–236, May 1996.
[65] P.-R. Chang and B.-C. Wang, “Adaptive fuzzy proportional integral power control for a cellular CDMA system with time delay,” IEEE Journal on selected areas in communications, vol. 14, no. 9, pp. 1818–1829, Feb. 1996.
[66] X. Tan and H. Yang, “A novel power control strategy for CDMA mobile system,” Proc. Wireless communications, networking and mobile computing, pp. 1-4, WCOM 2006.
[67] X. Wu, L. Ge, and G.Liang, “Adaptive power control on the reverse link for CDMA cellular system,” Paper presented at IEEE 15th APCC/OECC'99 communications 1999, fifth Asia-pacific conference and fourth Optoelectronics and Communications Conference, vol. 1, pp. 608-611, Oct. 1999.
[68] W. Panichpattanakul and W. Benjapolakul, “Fuzzy power and fuzzy weighting controls in DS–CDMA cellular mobile system,” Proc. 59th IEEE conf. on Veh. Technol., vol. 2, pp. 994–998, May 2004.
[69] W. Panichpattanakul and W. Benjapolakul, “Improvement of fuzzy power control for DS–CDMA cellular mobile system having variable number of users,” Proc. IEEE conf. on ISCAS 2004, pp. IV-109-IV-112, 2004.
[70] J.-S. R. Jang, “ANFIS: Adaptive networked-based fuzzy inference systems,” IEEE Transactions on System, Man, and Cybernetics, vol. 23, pp. 665-658, 1993.
[71] H.-C. Hsin, C.-C Li, M. Sun, and R. J. Sclabassi, “An adaptive training alogorithm for back-propagation neural networks,” IEEE Trans. on systems, MAN, and CYBERNETICS, vol. 25, no. 3, pp. 512- , Mar. 1995.
[72] J. M. Mendel, “Fuzzy logic systems for engineering: a tutorial,” Proc. IEEE vol. 83, no. 3, Mar. 1995.
[73] L. A. Zadeh, “Fuzzy sets,” Informat. Control, vol. 8. pp. 338-353. 1965.
[74] L. A. Zadeh, “Fuzzy algorithm,” Informat. Control, vol. 12, pp. 94-102, 1968.
[75] K. S. Chen and M. K. Tsay, “Propagation measurement and system performance analysis of LMDS in Taiwan,” Tech. Rep., Chung–Hwa Telecommun. Co. Ltd., Chung–Li, Taiwan, 2001.
[76] A. D. Panagopoulos, V. K. Katsambas, and J. D. Kanellopoulos, “A simple model for differential rain attenuation statistics on converging terrestrial microwave paths,” IEEE antennas and wireless propagation Letters, vol. 2, pp.82-85, 2003.
[77] C.-Y. Chu and K. S. Chen, “A study of rain attenuation and interference effects on cell planning for LMDS system,” Proc. 3rd Int. Conf. on microwave and millimeter wave technology, pp. 330-336, 2002.
[78] C.-Y. Chu and K. S. Chen, “Effects of rain fading on the efficiency of the Ka–band LMDS system in the Taiwan area,” IEEE Trans. Veh. Technol., vol. 54, no. 1, pp. 9–19, Jan. 2005.
[79] A. Disssanayake, J. Allnutt, and F. Haidara, “A prediction model that combines rain attenuation and other propagation impairments along earth-satellite paths,” IEEE Transactions on Antenna and Propagation, no. 10, pp. 1546-1559, 1997.
[80] B. Fong, P. B. Rapajic, G. Y. Hong, and A. C. M. Fong, “The effect of rain attenuation on orthogonally polarized LMDS systems in tropical Rain regions,” IEEE antennas and wireless propagation letters, vol. 2, pp. 66-67, 2003.
[81] B. Fong, A. C. M. Fong, G. Y. Hong, and H. Ryu, “Measurement of attenuation and phase on 26 GHz wide-band point-to-multipoint signals under the influence of rain,” IEEE antennas and wireless propagation letters, vol. 4, pp.20-21, 2005.
[82] A. Paraboni, G. Masini and A. Elia, “The effect of precipitation on microwave LMDS networks-performance analysis using a physical raincell model,” IEEE Journal on Selected areas in Communications, no. 3, pp. 615-619, 2002.
[83] “Guide to the application of the propagation methods of radio communication study group 3,” ITU-R Rec. P.1144-3, 2001.
[84] “Propagation data and prediction methods required for the design of earth–space telecommunication systems,” ITU-R Rec. P.618-8, 2003.
[85] “Propagation data and prediction methods required for the design of terrestrial line–of–sight systems,” ITU–R Rec. P530–10, 2001.
[86] “Specific attenuation model for rain for use in prediction methods,” ITU-R Rec. P838-2, 2003.
[87] R. K. Crane, “Prediction of attenuation by rain,” IEEE Transactions on Communications, no. 9, pp. 1717-1733, 1980.
[88] D. R. Amitava, “Bringing home the Internet,” IEEE Spectrum, Vol. 36, pp. 32-38, March 1999.
[89] P. Mahonen, T. Saarinen, Z. Shelby and, L. Munoz, “Wireless Internet over LMDS: architecture and experimental implementation,” IEEE Communications Magazine, Vol. 39, pp. 126-132, May 2001.
[90] G.M. Stamatelos and D.D. Falconer, “Millimeter radio access to multimedia service via LMDS,” Proc. Global Telecommunications Conference, pp.1603-1607, 1996.
[91] B. Cornaglia, R. Santaniello, E. Leonardi, R.L. Cigno, M. Meo, F. Neri and D. Saracino, “LMDS System: A possible solution for wireless ATM access networks,” Proc. IEEE International Conference on ATM, pp.41-50, 1998.
[92] R.C. Flint, D. D. Zenobio, G. Santella, M. Celidonio and B. Vucetic, “The CABSINET Project: A flexible cellular broadband architecture,” Proc. International Zurich Seminar on Broadband Communications, Accessing, Transmission, Networking. 1998, pp.149-154.
[93] I. Frigui and J. Schellenberg, “Providing effective internet services in the MMDS, LMDS MVDS Environment,” Proc. International Broadcasting Convention, September 1997, pp. 898-94.
[94] V. I. Roman, “Frequency reuse and system deployment in Local Multipoint Distribution Service” IEEE Personal Communications, pp. 20 –27, December. 1999
[95] M. Gagnaire, “An overview of broad-band access technologies,” IEEE Proceeding, Vol. 85, No. 12, pp.1958-1972, December.1997.
[96] H. Bolcskei, A.J. Paulraj, K.V.S. Hari, R.U. Nabar and W.W. Lu, “Fixed broadband wireless access: State of the art, challenges, and future directions,” IEEE Communication Magazine, pp. 100-108, 2001.
[97] O. Andrisano, V. Tralli and R. Verdone, “Millimeter waves for short-range multimedia communication system”, IEEE proceeding, vol. 86, pp1383-1401, July 1998.
[98] K. K. Leung and A. Srivastava, “Dynamic allocation of downlink and uplink Resource for broadband services in fixed wireless networks,” IEEE Journal on Selected Areas in Communications, Vol.17, pp.990-1006, May.1999.
[99] A. Kajiwara, “LMDS radio channel obstructed by foliage,” Proc. IEEE International Conference on Communications, vol. 3, pp.1583 -1587, 2000.
[100] N. Morinaga, M. Nakagawa and R. Kohno, “New concepts and technologies for achieving highly reliable and high-capacity multimedia wireless communications Systems,” IEEE Communication Magazine, pp. 34-40, Jan. 1997.
[101] H.R. Anderson, “Simulations of channel capacity and frequency reuse in multipoint LMDS systems,” Proc. IEEE Radio and Wireless Conference, pp.9-12, 1999.
[102] S. W. Wang and S. S. Rappaport, “Signal-to-interference calculations for balanced channel assignment patterns in cellular communications system,” IEEE Transactions on Communications, vol. 37, pp. 1077 –1087, Oct. 1989.
[103] S. W. Wang and S. S. Rappaport, “Signal-to-interference calculations for corner- excited cellular communications system,” IEEE Transactions on Communications, vol. 39, pp. 1886 –1896, Dec. 1991.
[104] L. C. Wang, K. K. Leung, “A high-capacity wireless network by quad-sector cell and interleaved channel assignment,” IEEE Journal on Selected Areas in Communications, pp. 472-480, Mar. 2000.
[105] O. W. Ata, H. Seki and A. Paulraj, “Capacity enhancement in quad-sector cell architecture with interleaved channel and polarization assignments,” Proc. IEEE International Conference on Communications, pp.2317-2321, 2001.
[106] I. Islam and S. Hossain, “Optimum cell-site positioning model for cellular network by grid line shifting method,” Proc. IEEE Region 10 Conference, pp.2317-2321.
[107] M. K. Tsay and Z. S. Lee, “Inter Cell Interference Reduction of LMDS in the Downlink Direction,” Proc. 2005 Cross-Strait Information Technology Conference (CSIT 2005), Taiwan, January 2006.
[108] W. C. Y. Lee, “Elements of cellular mobile radio systems,” IEEE Transactions on Vehicular Technology, Vol.35, pp.48-56, May.1986.
[109] G. K. Chan, “Effect of sectorization on the spectrum efficiency of cellular radio systems” IEEE Transactions on Vehicular Technology, Vol.41, pp.217-225, Aug.1992.
[110] L. C. Wang, G. L. Stuber and C.T. Lea, “Architecture design, frequency planning, and performance analysis for a microcell/macrocell overlaying system,” IEEE Transactions on Vehicular Technology, no. 4, pp. 836-848, 1997.
[111] R. Pattuelli and V. Zingarelli, “Precision of the estimation of area coverage by planning tools in cellular systems,” IEEE Personal Communication, pp. 50-53, June 2000.
[112] M. K. Tsay, Z. S. Lee and C. H. Liao, “Variable Range Power Control for Downlink CDMA-Based LMDS System,” Proc. First International Conference on Communications and Electronics (HUT-ICCE 2006), Hanoi, Vietnam, October 2006.
[113] M. K. Tsay and Z. S. Lee, “Improve the Performance of CDMA-Based LMDS by Power Control Along with Dynamic Modulation,” International Journal of Electrical Engineering, vol. 13, no. 4, pp389-395, 2006.
[114] H. Vasseur, “Degradation of availability performance in dual-polarized satellite communication system” IEEE Transactions on Communications, vol. 48, no. 3, pp. 465-472, Mar. 2000.
[115] M. K. Tsay and F. T. Wang, “A Study of fixed wireless cellular system operating at Ka band,” Proc. Asia-Pacific Conference on Communications, pp. 288-291, Tokyo Japan, Sep. 2001.
[116] G. Durgin, T. S. Rappaport, and H. Xu, “Measurements and models for radio path loss and penetration loss in and around homes and trees at 5.85 GHz,” IEEE Transactions on Communications, vol. 46, pp. 1484 –1496, Nov. 1998.
[117] X. Hao, T.S. Rappaport, R.J.Boyle, J.H. Schaffner, “Measurements and models for 38-GHz point-to-multipoint radiowave propagation,” IEEE Journal on Selected Areas in Communications, volume. 18, March 2000, pp. 310 –321
[118] M. K. Tsay, Z. S. Lee and C. H. Liao, “Variable Range Power Control for Downlink CDMA-Based LMDS System,” Posts, Telecommunications and Information Technology Journal (PTITJ), Mar. 2007. (online: http://www.tapchibcvt.gov.vn/Uploaded/ admin/ Variable_Range_Power_Control_for_Downlink.pdf ).
[119] F. T. Wang and M. K. Tsay, “Twisted sector cellular in fixed broadband networks,” Proc. 7-th Asia-Pacific Conference on Communication, pp. 533 –537, Tokyo Japan, Sep. 2001.
[120] L.C. Wang, G. L, “A new cellular architecture based on an interleaved cluster concept,” IEEE Transactions on Vehicular Technology, no. 6, pp. 1809-1818, 1999.
[121] M. K. Tsay, Z. S. Lee and C. H. Liao, “Fuzzy Power Control for Downlink CDMA-Based LMDS Network,” to appear in IEEE Transactions on Vehicular Technology.
[122] R. D. Murch and K. B. Letaief, “Antenna system for broadband wireless access,” IEEE Communications Magazine, pp. 76-83, Apr. 2002.
[123] R. C. Bernhardt, “Macroscopic diversity in frequency reuse radio systems,” IEEE Journal on Selected Areas in Communications, vol. SAC-5, pp. 62-870, Jun.1987.
[124] D. Lee and C. Xu, “The effect of narrow-beam antenna and multiple tiers on system capacity in CDMA wireless local loop,” IEEE Communication Magazine, pp. 110-114, Sep. 1997.
[125] J. G. Proakis, Digital Communication. McGraw-Hill, 1989.
[126] Skolnik and M. Ivan, Introduction to Radar Systems, McGraw-Hill, 1978.
指導教授 蔡木金(Mu-king Tsay) 審核日期 2008-9-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明