博碩士論文 106521011 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:85 、訪客IP:18.117.70.132
姓名 蕭仁澤(Jen-Che Hsiao)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 金屬氧化物熱電材料之製程開發及模組研究
(Process Innovation and Module Development of Metal Oxide Thermoelectric Materials)
相關論文
★ 以熱熔異質磊晶成長法製造之鍺光偵測器★ 在SOI基板上以快速熱熔法製造高品質鍺及近紅外線光偵測元件之研製
★ 鉭錳合金及銅鍺化合物應用於積體電路後段製程中銅導線之研究★ 快速熱熔磊晶成長法製造側向PIN(Ge-Ge-Si)光偵測器
★ 二維薄膜及三維塊材Seebeck係數量測★ 塊材、薄膜與奈米線之熱導係數量測方法探討
★ 以快速熱熔異質磊晶成長法製作鍺矽累增型光偵測器★ 以快速熱熔融磊晶成長法製作 鍺錫合金PIN型光偵測器
★ 利用火花電漿燒結法製備以矽為基底之奈米材料於熱電特性上之應用研究★ P型金屬氧化物薄膜的製備應用於軟性電子
★ 金屬氧化物製備應用於軟性電子元件★ 超導材料釔鋇銅氧化物熱電特性量測分析
★ 鎂矽錫合金熱電特性研究及應用★ 矽基熱電模組開發及特性研究
★ P型金屬氧化物與硫化物之研究★ 物聯網之熱感測器應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 熱電材料廣泛的用途,及其綠色能源永續發展的特性,逐漸成為目前主流趨勢。隨著技術發展成熟,熱電發電機轉換效率也在提升,如鋼鐵、水泥等製造業,也以廢熱進行發電。
氧化物半導體的熱穩定性及化學穩定性,使其成為適合的熱電材料,且研究指出奈米結構的特性可以降低熱導,進而提高ZT值。
本論文研究對象為N型半導體材料,主要使用材料為氧化銦,再透過添加二氧化鈰、鋅以及二氧化矽等,量測其作為熱電元件的可能性。我們發現以4at%比例的二氧化鈰添加至氧化銦,其熱電特性較為優秀,也較為穩定。選定較佳的材料後,開始模組的製作,並量測其發電功率。雖然本實驗成功製做出模組,但其功率及結構性並不如預期,整體結構不夠穩固,且整體電阻值過高,導致發電功率較低,希望能以此實驗為基石,在往後能尋找更合適之方法來改善目前問題,以研發出高轉換效率之熱電模組。
摘要(英) Thermoelectric (TE) materials are promising candidates for many applications, including thermopiles, thermal sensors, and TE cooler for laser diodes. The performance of a TE device is characterized by the figure of merit (ZT). Oxide semiconductors are regarded as the potential candidates for high-temperature TE applications due to thermal and chemical stability in ambient condition at high temperature. Theoretical calculations and experimental results suggest that ZT can be enhanced in nanostructured materials. It has been reported that In_2 O_3-based ceramics are with high power factors, and the ZT value of In_2 O_3-based ceramics can be effectively improved by reducing the thermal conductivity.
In this work, the TE properties of In_2 O_3 doped with Zn and CeO_2 have been investigated. The powders composition were designed as In_1.92 Ce_0.08 O_3 and In1.96Zn0.04O3. These thermoelectric materials were employed to fabricate a thermoelectric module for power generation.
In the future work, an enhanced ZT value and contact material are needed for high-temperature TE modules.
關鍵字(中) ★ 熱電材料
★ 氧化銦
★ 模組
★ 熱電優質
關鍵字(英) ★ Thermoelectric materials
★ Indium oxide
★ Module
★ ZT
論文目次 目錄
摘要....................................................I
Abstract...............................................II
誌謝..................................................III
目錄...................................................IV
圖目錄.................................................VI
第一章 緒論..............................................1
1-1 前言............................................1
1-2 熱電歷史.........................................2
1-3 熱電材料未來開發與趨勢............................2
1-4 研究動機.........................................3
第二章 基礎理論..........................................4
2-1 熱電效應.........................................4
2-2 熱電轉換效率及熱電優質............................6
2-3 氧化銦之添加.....................................8
2-4 冷壓法..........................................8
2-5 高溫燒結.........................................8
第三章 實驗流程與儀器設備................................10
3-1 實驗流程........................................10
3-2 實驗方法........................................11
3-3 實驗量測介紹....................................17
3-4 實驗儀器介紹....................................22
第四章 實驗結果分析與討論................................24
4-1 前言...........................................24
4-2 CeO2、Zn、In2O3製程參數與塊材量測................24
4-3 SiO2、CeO2、Zn、In2O3製程參數與塊材量測..........25
4-4 熱電特性比較....................................26
4-5 高溫熱電特性比較................................33
4-6 SEM圖..........................................36
4-7 XRD圖..........................................39
4-8 模組量測........................................41
4-9 模組討論........................................45
4-10 結論與未來展望.................................46
參考文獻................................................47
參考文獻 [1]巫振榮, "熱電元件應用." 國家奈米元件實驗室/蝕刻薄膜組.

[2]"<出自於:https://www.tusa.org.tw/chi/result/success_stories_view.aspx?id=BRHMdfkt%2BeM%3D&fbclid=IwAR2DMshrNZvt1181Gzd_DujUGLuVgUTGC_NI7E1UrbAV3kyaT1fwCPLNfRs>."

[3]G. Korotcenkov, V. Brinzari, and M.-H. Ham, "In2O3-Based Thermoelectric Materials: The State of the Art and the Role of Surface State in the Improvement of the Efficiency of Thermoelectric Conversion," Crystals, vol. 8, no. 1, 2018, doi: 10.3390/cryst8010014.

[4]M. G. Kanatzidis, "Nanostructured Thermoelectrics: The New Paradigm?†," Chemistry of Materials, vol. 22, no. 3, pp. 648-659, 2010, doi: 10.1021/cm902195j.

[5]Y. Liu et al., "High-Temperature Transport Property of In2−xCexO3 (0 ≤ x ≤ 0.10) Fine Grained Ceramics," Journal of the American Ceramic Society, vol. 95, no. 8, pp. 2568-2572, 2012, doi: 10.1111/j.1551-2916.2012.05206.x.

[6]J. Lan, Y.-H. Lin, Y. Liu, S. Xu, C.-W. Nan, and M. Hopper, "High Thermoelectric Performance of Nanostructured In2O3-Based Ceramics," Journal of the American Ceramic Society, vol. 95, no. 8, pp. 2465-2469, 2012, doi: 10.1111/j.1551-2916.2012.05284.x.

[7]K. Koumoto, Y. Wang, R. Zhang, A. Kosuga, and R. Funahashi, "Oxide Thermoelectric Materials: A Nanostructuring Approach," Annual Review of Materials Research, vol. 40, no. 1, pp. 363-394, 2010, doi: 10.1146/annurev-matsci-070909-104521.

[8]A. J. Minnich, M. S. Dresselhaus, Z. F. Ren, and G. Chen, "Bulk nanostructured thermoelectric materials: current research and future prospects," Energy & Environmental Science, vol. 2, no. 5, 2009, doi: 10.1039/b822664b.

[9]L. E. Bell, "<Cooling, Heating, Generating Power, and Recovering Waste Heat with Thermoelectric Systems.pdf>," Science, 2008.

[10]"<出自於:https://www.fzu.cz/~knizek/pdf/Thermopower.pdf>."

[11]Y. G. Gurevich and G. N. Logvinov, "Physics of thermoelectric cooling," Semiconductor Science and Technology, vol. 20, no. 12, pp. R57-R64, 2005, doi: 10.1088/0268-1242/20/12/r01.

[12]A. F. Ioffe, "Semiconductor Thermoelements and Thermoelectric Cooling," Infosearch, 1957.

[13]D. S. Kim and C. A. Infante Ferreira, "Solar refrigeration options – a state-of-the-art review," International Journal of Refrigeration, vol. 31, no. 1, pp. 3-15, 2008, doi: 10.1016/j.ijrefrig.2007.07.011.

[14]K. Koumoto et al., "Thermoelectric Ceramics for Energy Harvesting," Journal of the American Ceramic Society, vol. 96, no. 1, pp. 1-23, 2013, doi: 10.1111/jace.12076.

[15]M. V. S. a. G. D. Mahan, "<Minimum Thermal Conductivity of Superlattices.pdf>," PHYSICAL REVIEW LETTERS.

[16]C. Y. Liu, "Development of bismuth telluride alloy thin film thermoelectric devices," 2015. National Taiwan University.

[17]G. Ren et al., "High Performance Oxides-Based Thermoelectric Materials," Jom, vol. 67, no. 1, pp. 211-221, 2014, doi: 10.1007/s11837-014-1218-2.

[18]E. Guilmeau et al., "Tuning the transport and thermoelectric properties of In2O3 bulk ceramics through doping at In-site," Journal of Applied Physics, vol. 106, no. 5, 2009, doi: 10.1063/1.3197064.

[19]H. O. W. S. S. K. Koumoto, "Thermoelectric Properties of Homologous Compounds in the ZnO–In2O3 System," The American Ceramic Society, 1996.

[20]M. Amani, I. M. Tougas, O. J. Gregory, and G. C. Fralick, "High-Temperature Thermoelectric Properties of Compounds in the System Zn x In y O x+1.5y," Journal of Electronic Materials, vol. 42, no. 1, pp. 114-120, 2012, doi: 10.1007/s11664-012-2300-6.

[21]F. Yu, et al., "Enhanced thermoelectric figure of merit in nano crystalline Bi2Te3 bulk," Journal of Applied Physics, 2009.

[22]M. N. Rahaman, "Ceramic Processing and Sintering," CRC Press 2003.

[23]駱榮富教授, "<出自於:http://www.mse.fcu.edu.tw/wSite/public/Attachment/f1348051467573.pdf>."

[24]E. G. D. Be ́rardan, A. Maignan, and B. Raveau, "Enhancementof the Thermoelectric Performances of In2O3by the Coupled Substitution ofMn2+/Sn4+for In3+," J. Appl. Phys, 2008.

[25]D. Bérardan, E. Guilmeau, A. Maignan, and B. Raveau, ":Ge, a promising n-type thermoelectric oxide composite," Solid State Communications, vol. 146, no. 1-2, pp. 97-101, 2008, doi: 10.1016/j.ssc.2007.12.033.

[26]K. Park et al., "Improved thermoelectric properties by adding Al for Zn in (ZnO)mIn2O3," Materials Letters, vol. 61, no. 25, pp. 4759-4762, 2007, doi: 10.1016/j.matlet.2007.03.021.

[27] Z. A. H. Von Kasper, Allg. Chem., "<Neuartige Phasen mit wurtzitähnlichen Strukturen im System ZnO In2O3.pdf>," 1967.

[28]P.J.CannardR.J.D.Tilley, "<New Intergrowth Phases in the ZnO-In2O3 System.pdf>," Solid state chemistry, 1988.

[29]Y. Zhang et al., "High-temperature and high-power-density nanostructured thermoelectric generator for automotive waste heat recovery," Energy Conversion and Management, vol. 105, pp. 946-950, 2015, doi: 10.1016/j.enconman.2015.08.051.

[30]T. Nakamura et al., "Power-Generation Performance of a π-Structured Thermoelectric Module Containing Mg2Si and MnSi1.73," Journal of Electronic Materials, vol. 44, no. 10, pp. 3592-3597, 2015, doi: 10.1007/s11664-015-3910-6.

[31]D. K. Schroder, " Semiconductor material and device characterization," John Wiley & Sons, 2006.

[32]維基百科, "https://zh.wikipedia.org/wiki/%E9%98%BF%E5%9F%BA%E7%B1%B3%E5%BE%B7%E6%B5%AE%E9%AB%94%E5%8E%9F%E7%90%86."

[33]Y. Tada, M. Harada, M. Tanigaki, and W. Eguchi, "Laser flash method for measuring thermal conductivity of liquids-application to low thermal conductivity liquids," Rev Sci Instrum, vol. 49, no. 9, p. 1305, Sep 1978, doi: 10.1063/1.1135573.

[34]G. H. Erno Pungor, "A Practical Guide to Instrumental Analysis," CRC Press, 1994.

[35]維基百科, "<出自於:https://en.wikipedia.org/wiki/Thermal_conductivity>."

[36]維基百科, "<出自於:https://zh.wikipedia.org/wiki/%E6%89%AB%E6%8F%8F%E7%94%B5%E5%AD%90%E6%98%BE%E5%BE%AE%E9%95%9C>."

[37]"<出自於:http://www2.nkfust.edu.tw/~johnfu/mold%20teaching%20materials/7%20transparent%20film.pdf>."

[38]維基百科, "<出自於:https://zh.wikipedia.org/wiki/%E6%B0%A7%E5%8C%96%E9%93%9F%E9%94%A1>."

[39]"<出自於:https://read01.com/zh-tw/xA0z08.html?fbclid=IwAR3TXU1XMMUXhLa5vy9lXTmcjywYbUq8_n28BeD3HNTWHiv_ReVnCq7V6gA#.XQsn0BYzaUl>," 2015. 第一LED網.
指導教授 辛正倫(Cheng-Lun Hsin) 審核日期 2019-7-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明