博碩士論文 106521003 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:88 、訪客IP:18.224.68.59
姓名 鄭詩諺(Shih-Yen Cheng)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 P 型熱電材料之製程開發及模組研究
(Process innovation and module development of p-type thermoelectric materials)
相關論文
★ 以熱熔異質磊晶成長法製造之鍺光偵測器★ 在SOI基板上以快速熱熔法製造高品質鍺及近紅外線光偵測元件之研製
★ 鉭錳合金及銅鍺化合物應用於積體電路後段製程中銅導線之研究★ 快速熱熔磊晶成長法製造側向PIN(Ge-Ge-Si)光偵測器
★ 二維薄膜及三維塊材Seebeck係數量測★ 塊材、薄膜與奈米線之熱導係數量測方法探討
★ 以快速熱熔異質磊晶成長法製作鍺矽累增型光偵測器★ 以快速熱熔融磊晶成長法製作 鍺錫合金PIN型光偵測器
★ 利用火花電漿燒結法製備以矽為基底之奈米材料於熱電特性上之應用研究★ P型金屬氧化物薄膜的製備應用於軟性電子
★ 金屬氧化物製備應用於軟性電子元件★ 超導材料釔鋇銅氧化物熱電特性量測分析
★ 鎂矽錫合金熱電特性研究及應用★ 矽基熱電模組開發及特性研究
★ P型金屬氧化物與硫化物之研究★ 物聯網之熱感測器應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 由於國際能源需求不斷上升以及溫室效應日益嚴重,乾淨、可再生的能源近年來不斷在發展中,而目前使用的石化燃料大部分的功率消耗來自於廢熱的逸散,熱電材料由於可直接將熱能與電能轉換,對於廢熱回收為重要的研究領域,此外,影響熱電材料轉換效率主要取決於其熱電優值(ZT),改善熱電優值也是目前研究的重點。
本實驗研究新興中溫P型熱電材料BiCuSeO及低溫P型熱電材料MgAgSb,以別於以往使用熱壓或火花電漿燒結,我們藉由球磨至奈米尺寸並均勻混合後,搭配冷壓及調整不同退火方式、溫度及時間等參數進行反應,成功製備出Seebeck係數最高達448.86(μV/K)及最低熱導率達0.272(W/m-K)的Bi_0.92 Ag_0.08 CuSeO樣品,以及P型MgAgSb塊材。最後使用P型Bi_0.92 Ag_0.08 CuSeO與N型Mg_2 Si_0.4 Sn_0.6製作出的模組在溫差46度時,最大輸出功率達到43.1(μW)。
摘要(英) Due to the demand of energy and the concern on pollution, renewable energy has attracted much attention in recent years. Among them, thermoelectric energy can be achieved by waste heat recovery from direct conversion from thermal energy to electricity. The conversion efficiency of thermoelectric materials is mainly determined by its thermoelectric figure of merit (ZT). The improvement of the ZT is keen for current research.
In this thesis, The ZTs of medium- and low-temperatured P-type thermoelectric material BiCuSeO and MgAgSb were studied, respectively. Different from conventional hot pressing or spark plasma sintering process, we used ball-milling technique to obtain nanometer-sized powders, and then cold-pressed the powders and annealed at different temperatures and time to study P-type MgAgSb and Bi0.92Ag0.08CuSeO bulks. High Seebeck coefficient of 448.86 (μV/K) and a minimum thermal conductivity of 0.272 (W/m-K) were achieved. Eventually, a thermoelectric module was fabricated using P-type Bi0.92Ag0.08CuSeO and N-type Mg2Si0.4Sn0.6, and the maximum output power reached 43.1 (μW) at a temperature difference of 46 degrees.
關鍵字(中) ★ 熱電材料
★ 熱電模組
★ 鉍銅硒氧
★ 鎂銀碲
關鍵字(英)
論文目次 摘要 I
Abstract II
目錄 III
圖表目錄 V
第一章、 簡介 p.1
1-1 前言 p.1
1-2 熱電材料應用 p.1
1-3 研究動機 p.2
第二章、 理論基礎 p.3
2-1熱電效應 p.3
2-1-1 Seebeck效應 p.3
2-1-2 Peltier效應 p.3
2-1-3 Thomson效應 p.4
2-1-4 熱電優值 p.4
2-2 熱電模組 p.5
2-3 鉍銅硒氧(BiCuSeO)熱電材料 p.6
2-4 鎂銀碲(MgAgSb)熱電材料 p.7
第三章、 實驗流程與儀器設備 p.8
3-1 實驗流程 p.8
3-2 塊材製備 p.9
3-2-1奈米粉末製備 p.9
3-2-2 粉末混合 p.11
3-2-3 冷壓成塊 p.12
3-2-4 燒結反應 p.12
3-3 模組製作 p.15
3-4 實驗及量測設備 p.15
3-4-1 電阻率量測 p.15
3-4-2 Seebeck係數量測 p.18
3-4-3 熱導率量測 p.18
3-4-3-1 熱擴散係數量測 p.19
3-4-3-2 比熱量測 p.20
3-4-3-3 密度量測 p.20
3-4-4 結構分析儀器 p.21
3-4-5 繞射分析儀器 p.22
3-4-6 模組電性量測 p.23
第四章、 結果與討論 p.25
4-1 鉍銅硒氧(BiCuSeO) p.25
4-2 鎂銀碲(MgAgSb) p.35
4-3 熱電模組 p.39
第五章、 結論與未來展望 p.41
第六章、 參考文獻 p.42
參考文獻 [1] S. Chu and A. Majumdar, "Opportunities and challenges for a sustainable energy future," nature, vol. 488, no. 7411, p. 294, 2012.
[2] H. Zhao, Q. Wu, S. Hu, H. Xu, and C. N. Rasmussen, "Review of energy storage system for wind power integration support," Applied energy, vol. 137, pp. 545-553, 2015.
[3] N. Kannan and D. Vakeesan, "Solar energy for future world:-A review," Renewable and Sustainable Energy Reviews, vol. 62, pp. 1092-1105, 2016.
[4] D. K. Okot, "Review of small hydropower technology," Renewable and Sustainable Energy Reviews, vol. 26, pp. 515-520, 2013.
[5] R. A. Voloshin, M. V. Rodionova, S. K. Zharmukhamedov, T. N. Veziroglu, and S. I. Allakhverdiev, "Biofuel production from plant and algal biomass," International journal of hydrogen energy, vol. 41, no. 39, pp. 17257-17273, 2016.
[6] A. F. Ioffe, L. Stil′Bans, E. Iordanishvili, T. Stavitskaya, A. Gelbtuch, and G. Vineyard, "Semiconductor thermoelements and thermoelectric cooling," Physics Today, vol. 12, p. 42, 1959.
[7] 巫振榮, "熱電元件應用," 2013.
[8] D. G. Cahill, K. Goodson, and A. Majumdar, "Thermometry and thermal transport in micro/nanoscale solid-state devices and structures," Journal of Heat Transfer, vol. 124, no. 2, pp. 223-241, 2002.
[9] J. P. Heremans et al., "Enhancement of thermoelectric efficiency in PbTe by distortion of the electronic density of states," Science, vol. 321, no. 5888, pp. 554-557, 2008.
[10] T. Harman, P. Taylor, M. Walsh, and B. LaForge, "Quantum dot superlattice thermoelectric materials and devices," science, vol. 297, no. 5590, pp. 2229-2232, 2002.
[11] J. P. Heremans, C. M. Thrush, and D. T. Morelli, "Thermopower enhancement in lead telluride nanostructures," Physical Review B, vol. 70, no. 11, p. 115334, 2004.
[12] 黃振東、徐振庭, "熱電材料," 科學發展486期, 2013.
[13] A. Nag and V. Shubha, "Oxide thermoelectric materials: A structure–property relationship," Journal of electronic materials, vol. 43, no. 4, pp. 962-977, 2014.
[14] Y. H. Lin, C. W. Nan, Y. Liu, J. Li, T. Mizokawa, and Z. J. J. o. t. A. C. S. Shen, "High‐Temperature Electrical Transport and Thermoelectric Power of Partially Substituted Ca3Co4O9‐Based Ceramics," vol. 90, no. 1, pp. 132-136, 2007.
[15] J. Lan et al., "High‐Temperature Thermoelectric Behaviors of Fine‐Grained Gd‐Doped CaMnO3 Ceramics," vol. 93, no. 8, pp. 2121-2124, 2010.
[16] T. Okuda, K. Nakanishi, S. Miyasaka, and Y. J. P. R. B. Tokura, "Large thermoelectric response of metallic perovskites: Sr 1− x La x TiO 3 (0<~ x<~ 0. 1)," vol. 63, no. 11, p. 113104, 2001.
[17] J. L. Lan et al., "Enhanced thermoelectric properties of Pb‐doped BiCuSeO ceramics," vol. 25, no. 36, pp. 5086-5090, 2013.
[18] P. Jood et al., "Al-doped zinc oxide nanocomposites with enhanced thermoelectric properties," vol. 11, no. 10, pp. 4337-4342, 2011.
[19] D. Bérardan, E. Guilmeau, A. Maignan, and B. J. S. S. C. Raveau, "In2O3: Ge, a promising n-type thermoelectric oxide composite," vol. 146, no. 1-2, pp. 97-101, 2008.
[20] W. Shin and N. J. J. j. o. a. p. Murayama, "Li-doped nickel oxide as a thermoelectric material," vol. 38, no. 11B, p. L1336, 1999.
[21] K. Koumoto, Y. Wang, R. Zhang, A. Kosuga, and R. J. A. r. o. m. r. Funahashi, "Oxide thermoelectric materials: a nanostructuring approach," vol. 40, pp. 363-394, 2010.
[22] H. Ohta, K. Sugiura, and K. J. I. c. Koumoto, "Recent progress in oxide thermoelectric materials: p-type Ca3Co4O9 and n-type SrTiO3−," vol. 47, no. 19, pp. 8429-8436, 2008.
[23] J. He, Y. Liu, and R. J. J. o. M. R. Funahashi, "Oxide thermoelectrics: The challenges, progress, and outlook," vol. 26, no. 15, pp. 1762-1772, 2011.
[24] K. Koumoto, I. Terasaki, and R. J. M. B. Funahashi, "Complex oxide materials for potential thermoelectric applications," vol. 31, no. 3, pp. 206-210, 2006.
[25] A. Kusainova, P. Berdonosov, L. Akselrud, L. Kholodkovskaya, V. Dolgikh, and B. J. J. o. S. S. C. Popovkin, "New layered compounds with the general composition (MO)(CuSe), where M= Bi, Nd, Gd, Dy, and BiOCuS: Syntheses and crystal structure," vol. 112, no. 1, pp. 189-191, 1994.
[26] L. Zhao, D. Berardan, Y. Pei, C. Byl, L. Pinsard-Gaudart, and N. J. A. P. L. Dragoe, "Bi 1− x Sr x CuSeO oxyselenides as promising thermoelectric materials," vol. 97, no. 9, p. 092118, 2010.
[27] Y. Liu et al., "Remarkable enhancement in thermoelectric performance of BiCuSeO by Cu deficiencies," vol. 133, no. 50, pp. 20112-20115, 2011.
[28] J. Li et al., "Thermoelectric properties of Mg doped p-type BiCuSeO oxyselenides," vol. 551, pp. 649-653, 2013.
[29] F. Li, T.-R. Wei, F. Kang, and J.-F. J. J. o. M. C. A. Li, "Enhanced thermoelectric performance of Ca-doped BiCuSeO in a wide temperature range," vol. 1, no. 38, pp. 11942-11949, 2013.
[30] S. D. Luu and P. J. J. o. M. C. A. Vaqueiro, "Synthesis, structural characterisation and thermoelectric properties of Bi 1− x Pb x OCuSe," vol. 1, no. 39, pp. 12270-12275, 2013.
[31] J.-L. Lan et al., "Doping for higher thermoelectric properties in p-type BiCuSeO oxyselenide," vol. 102, no. 12, p. 123905, 2013.
[32] J. Li et al., "A high thermoelectric figure of merit ZT> 1 in Ba heavily doped BiCuSeO oxyselenides," vol. 5, no. 9, pp. 8543-8547, 2012.
[33] L. Pan, D. Bérardan, L. Zhao, C. Barreteau, and N. J. A. P. L. Dragoe, "Influence of Pb doping on the electrical transport properties of BiCuSeO," vol. 102, no. 2, p. 023902, 2013.
[34] S. Tan et al., "Enhanced low temperature thermoelectric performance of Ag-doped BiCuSeO," vol. 105, no. 8, p. 082109, 2014.
[35] H. J. M. Goldsmid, "Bismuth telluride and its alloys as materials for thermoelectric generation," vol. 7, no. 4, pp. 2577-2592, 2014.
[36] B. Poudel et al., "High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys," vol. 320, no. 5876, pp. 634-638, 2008.
[37] L.-P. Hu, T.-J. Zhu, Y.-G. Wang, H.-H. Xie, Z.-J. Xu, and X.-B. J. N. A. M. Zhao, "Shifting up the optimum figure of merit of p-type bismuth telluride-based thermoelectric materials for power generation by suppressing intrinsic conduction," vol. 6, no. 2, p. e88, 2014.
[38] Y. Zheng et al., "Mechanically robust BiSbTe alloys with superior thermoelectric performance: a case study of stable hierarchical nanostructured thermoelectric materials," vol. 5, no. 5, p. 1401391, 2015.
[39] J. Emsley, Nature′s building blocks: an AZ guide to the elements. Oxford University Press, 2011.
[40] M. J. Kirkham, A. M. dos Santos, C. J. Rawn, E. Lara-Curzio, J. W. Sharp, and A. J. J. P. R. B. Thompson, "Abinitio determination of crystal structures of the thermoelectric material MgAgSb," vol. 85, no. 14, p. 144120, 2012.
[41] H. Zhao et al., "High thermoelectric performance of MgAgSb-based materials," vol. 7, pp. 97-103, 2014.
[42] D. Kraemer et al., "High thermoelectric conversion efficiency of MgAgSb-based material with hot-pressed contacts," vol. 8, no. 4, pp. 1299-1308, 2015.
[43] Z. Liu et al., "Mechanical properties of nanostructured thermoelectric materials α-MgAgSb," vol. 127, pp. 72-75, 2017.
[44] 科豐國際有限公司, "Introduction of 4 Point Probe."
[45] 徐梁, "閃光導熱儀LFA原理與測試," 2006.
[46] 陳玉惠, "熱示差掃瞄卡量計 DSC 的原理," 2008.
[47] 羅聖全, "科學基礎研究之重要利器—掃瞄式電子顯微鏡(SEM)," 2013.
[48] 國立中央大學研究發展處, "國立中央大學校內貴重儀器."
[49] 林麗娟, "X光繞射原理及其應用," 工業材料86期, pp. 100-109, 1994.
[50] B. Corporation, "D2 PHASER - Benchtop Diffractometer," 2014.
[51] S. Das, S. M. Valiyaveettil, K.-H. Chen, S. Suwas, and R. C. J. M. R. E. Mallik, "Thermoelectric properties of Mn doped BiCuSeO," 2018.
指導教授 辛正倫(Cheng-Lun Hsin) 審核日期 2019-7-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明