博碩士論文 106521021 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:107 、訪客IP:18.226.251.74
姓名 陳昱志(Yu-Chih Chen)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 矽基氮化鎵高電子遷移率電晶體 通道層與緩衝層之成長與材料特性分析
(Growth and Characterization of Channel and Buffer Layers of GaN-based HEMTs Grown on Si)
相關論文
★ 磷化銦異質接面雙極性電晶體元件製作與特性分析★ 氮化鎵藍紫光雷射二極體之製作與特性分析
★ 氮化銦鎵發光二極體之研製★ 氮化銦鎵藍紫光發光二極體的載子傳輸行為之研究
★ 次微米磷化銦/砷化銦鎵異質接面雙極性電晶體自我對準基極平台開發★ 以 I-Line 光學微影法製作次微米氮化鎵高電子遷移率電晶體之研究
★ 磊晶成長氮化鎵高電子遷移率電晶體 結構 於矽基板過程晶圓翹曲之研析★ 氮化鎵/氮化銦鎵多層量子井藍光二極體之研製及其光電特性之研究
★ 砷化銦量子點異質結構與雷射★ 氮化鋁鎵銦藍紫光雷射二極體研製與特性分析
★ p型披覆層對量子井藍色發光二極體發光機制之影響★ 磷化銦鎵/砷化鎵異質接面雙極性電晶體鈍化層穩定性與高頻特性之研究
★ 氮化鋁中間層對氮化鋁鎵/氮化鎵異質接面場效電晶體之影響★ 不同濃度矽摻雜之氮化鋁銦鎵位障層對紫外光發光二極體發光機制之影響
★ 二元與四元位障層應用於氮化銦鎵綠光二極體之光性分析★ P型氮化銦鎵歐姆接觸層對氮化鋁銦鎵藍紫光雷射二極體特性之影響
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本論文報告利用有機金屬化學蒸氣沉積法成長氮化鎵高電子遷移率電晶體於矽基板上,並分析通道層磊晶條件與緩衝層結構變化對磊晶片結構特性與載子傳輸特性的影響。本研究發現,在成長AlGaN/GaN高電子遷移率電晶體通道層時,提高V/Ⅲ比能提升載子傳輸特性;而改變載氣(氫氣、氮氣)會明顯影響其表面形貌、粗糙度與異質界面品質。二次離子質譜儀測量的結果顯示使用氮氣載氣能降低通道層的碳背景濃度達50%,改善背景雜質散射機制,低溫(10 K)下電子遷移率可以達到27,000 cm2/V-s。但是在氮氣載氣環境下成長之樣品其二維電子氣濃度都比較低,這是因為在高V/III比下,三甲基鋁有較嚴重的預先反應,造成位障層之鋁成分下降所致。而在使用三乙基鎵取代三甲基鎵成長通道層時,由於二者之化學分解反應有所差異,其碳背景濃度可進一步降低,使低溫電子遷移率更是高達28,000 cm2/V-s。另外於緩衝層結構的研究方面,本研究將AlxGa1-xN/AlyGa1-yN超晶格置於與矽基板適當距離以及改變超晶格鋁成分與厚度之組合,可使緩衝層缺陷密度下降,其主要原因是與壓縮應力層的應力釋放有關,尤其是刃差排型態的缺陷隨其變化最為明顯。而透過此複合式超晶格緩衝層結構,我們獲得非常優良之AlInN HEMTs載子傳輸特性,其室溫電子遷移率為1,940 cm2/V-s、二維電子氣濃度為1.46×1013 cm-2以及片電阻為221.4 Ω/□;而低溫霍爾量測結果顯示,電子遷移率可由無超晶格結構的9,020 cm2/V-s提升至12,300 cm2/V-s。除此之外,從緩衝層垂直漏電流以及電流-電壓遲滯曲線測量結果得知,電性會因緩衝層總缺陷密度的下降有所改善;而緩衝層中的刃差排缺陷密度會影響其漏電流隨電壓增加的上升速率,在具有最高刃差排缺陷的樣品中有最緩慢的漏電流上升速率。最後以此複合式緩衝層結構為基礎,藉由增加超晶格的對數提升緩衝層材料結構的剛性係數(K),本研究得以達到晶圓翹曲僅有44 μm而厚度可達5 μm的6吋矽基氮化鎵高電子遷移率電晶體磊晶片。
摘要(英) In this work, an in-depth study of the channel and buffer layers of MOCVD grown (Al,In,Ga)N/GaN-on-Si high electron mobility transistors (HEMTs) is carried out systematically. It is found that a higher V-III ratio during the growth of the channel layer of an AlGaN/GaN HEMT, significantly improves the electron transport properties. Moreover, the choice of carrier gases such as H2 and N2, considerably affects the surface morphology, roughness and the overall quality of the heterointerface. Secondary ion mass spectroscopy (SIMS) measurements further indicate up to 50% reduction in the residual carbon concentration in the GaN layer by the use of N2 carrier gas. As a result, the electron mobility in those heterostructures reaches up to 27,000 cm2/V-s at 10K, possibly due to a notable reduction in interface roughness and background impurity scattering. However, the AlGaN barrier when grown in N2 ambient with high V/III ratio, shows a drop in the two dimensional electron gas density (2DEG) due to a strong pre-reaction of TMAl, causing a decrease in aluminum composition in the AlGaN barrier layer. Further changing the Ga precursor from trimethylgallium (TMG) to triethylgallium (TEG) leads to about an order of magnitude reduction in background carbon concentration in the GaN channel layer and results in further increase in electron mobility up to 28,000 cm2/V-s at 10K. Furthermore, high quality buffer layer for GaN-on-Si HEMTs has been obtained by employing superlattices (SLs) structures with different stress mitigating buffer schemes, including different compositions, SL thickness as well as at different positions in the entire buffer layer. The edge dislocation density decreases from 5.03x108 cm-2 in the heterostructure without SLs to 1.43x108 cm-2 with the use of superlattice structures by minimizing overall compressive strain in the GaN layer. The AlInN/GaN heterostructures when employed with these SLs buffers, demonstrate an electron mobility of 1,940 cm2/V-s, a 2DEG density of 1.45x1013 cm-2 and a sheet resistance as low as 221 Ω/□. A significant increase in low temperature mobility from 9,020 cm2/V-s to 12,300 cm2/V-s is also obtained possibly due to the reduction in dislocation scattering. Decrease in vertical leakage current and hysteresis is also observed on this sample. It is found that higher edge type dislocation density seems to be beneficial for reducing the rise rate of the vertical buffer leakage current. By adjusting the stiffness coefficient (K) of the buffer structure with increasing the pair of superlattice, a 5 μm thick AlGaN/GaN heterostructure on 150 mm diameter silicon substrate is demonstrated with a wafer bow of 44 μm only.
關鍵字(中) ★ 氮化鎵
★ 高電子遷移率電晶體
★ 矽基氮化鎵
★ 氮氣載氣
★ 三乙基鎵
★ 超晶格
關鍵字(英) ★ GaN
★ HEMT
★ GaN on Silicon
★ Nitrogen carrier gas
★ TEGa
★ Superlattices
論文目次 論文摘要 ....................................... i
Abstract ...................................... ii
致謝 .......................................... iii
目錄 .......................................... iv
圖目錄 ........................................ vii
表目錄 ........................................ x
第一章 導論 ............................ 1
1.1 前言 .................................. 1
1.2 研究背景 ............................... 3
1.2.1 氮化鎵材料介紹 ......................... 3
1.2.2 氮化鎵功率元件發展現況與問題 ............. 5
1.3 氮化鎵異質結構背景與其極化效應 ........... 9
1.3.1 氮化鎵之異質結構背景 .................... 9
1.3.2 氮化鎵異質結構極化效應 .................. 13
1.3.3 氮化鋁(銦)鎵/氮化鎵異質結構之發展情形 .... 16
1.4 論文架構 ............................... 19
第二章 氮化鎵異質結構之通道層改善研究 .... 20
2.1 前言 .................................. 20
2.2 氮化鎵通道層改善之研究背景 .............. 21
2.3 氮化鋁鎵/氮化鎵磊晶結構設計 ............. 23
2.3.1 研究方法與設備 ......................... 23
2.3.2 不同磊晶條件之氮化鋁鎵/氮化鎵異質結構設計. 27
2.4 氮化鋁鎵/氮化鎵異質結構分析與討論 ........ 29
2.4.1 比較不同氮化鋁鎵/氮化鎵異質結構霍爾特性 .. 29
2.4.2 探討表面形貌與異質介面粗糙度 ............. 33
2.4.3 通道層背景摻雜之變化 .................... 37
2.4.4 分析二維電子氣下降之原因 ................ 42
2.4.5 排除二維電子氣濃度因素之變溫霍爾特性 ..... 45
2.5 本章總結 ............................... 47
第三章 複合式超晶格緩衝層之特性探討 ...... 48
3.1 矽基氮化鎵研究背景與面臨之挑戰 ........... 48
3.1.1 研究背景 ............................... 48
3.1.2 矽上超晶格緩衝層之發展狀況 .............. 52
3.2 緩衝層堆疊不同超晶格結構之研究與開發 ..... 55
3.2.1 研究目的 ............................... 55
3.2.2 超晶格緩衝層磊晶結構設計與其理念 ......... 56
3.2.3 緩衝層缺陷密度分析與探討 ................ 58
3.2.4 磊晶應力特性分析 ....................... 63
3.2.5 變溫霍爾傳輸特性分析 .................... 68
3.2.6 AlInN HEMTs國際地位之評比 .............. 70
3.3 超晶格緩衝層元件特性分析 ................ 71
3.3.1 超晶格緩衝層之氮化鎵元件製作 ............. 71
3.3.2 超晶格緩衝層之高壓特性量測 .............. 73
3.4 使用超晶格結構提升緩衝層厚度 ............. 76
3.5 本章總結 ............................... 79
第四章 結論與未來展望 ................... 80
參考文獻 ............................... 82
參考文獻 [1] Chris Jakubiec, Rob Strittmatter Ph.D., and Chunhua Zhou Ph.D, “ EPC eGaN FETs Reliability Testing: Phase 9,” EPC Co., El Segundo, CA, 2017. https://epc-co.com/epc/Portals/0/epc/documents/product-train-ing/Reliability%20Report%20Phase%209.pdf
[2] Y. Zhou, D. Wang, C. Ahyi, C.-C. Tin, J. Williams, and M. Park, “ High breakdown voltage Schottky rectifier fabricated on bulk n-GaN substrate,” Solid-State Electronics, vol. 50, pp. 1744-1747, Nov.-Dec., 2006.
[3] N. Kaminski, and O. Hilt, “SiC and, GaN devices – wide bandgap is not all the same,” IET Circuits Devices Syst, vol. 8, iss. 3, pp. 227–236, Jan., 2014.
[4] S. C. Binari, P. B. Klein, and T. E. Kazior, “Trapping effects in GaN and SiC microwave FETs,” Proc. of the IEEE, vol. 90, no. 6, pp. 1048–1058, Jun., 2002.
[5] D. Jin, and J. A. del Alamo, “Methodology for the Study of Dynamic ON-Resistance in High-Voltage GaN Field-Effect Transistors,” IEEE Transaction on Electron Devices, vol. 60, no. 10, pp. 3190-3196, Aug., 2013.
[6] C. Zhang, M. Wang, B. Xie, C. P. Wen, J. Wang, Y. Hao, W. Wu, K. J. Chen and, B. Shen, “Temperature Dependence of the Surface- and Buffer-Induced Current Collapse in GaN High-Electron Mobility Transistors on Si Substrate,” IEEE Transactions on Electron Devices, vol. 62, no. 8, pp. 2475–2280, July, 2015.
[7] M. Asif Khan, J. N. Kuznia, and J. M. Van Hove, “Observation of a two‐dimensional electron gas in low pressure metalorganic chemical vapor deposited GaN‐AlxGa1−xN heterojunctions,” Appl. Phys. Lett., vol. 60, iss. 24, pp. 3027-3029, March, 1992.
[8] M. Asif Khan, J. N. Kuznia, D. T. Olson, W. J. Schaff, J. W. Burm, and M. S. Shur, “Microwave performance of a 0.25 um gate AlGaN/GaN heterostructure field effect transistor,” Appl. Phys. Lett., vol. 65, iss. 9, pp. 1121–1123, June, 1994.
[9] M. Gonschorek, J. F. Carlin, E. Feltin, M. A. Py, and N. Grandjean, “High electron mobility lattice-matched AlInN/GaN field-effect transistor heterostructures,” Appl. Phys. Lett., vol. 89, iss. 6, pp. 062106 1-3, June, 2006.
[10] D. S. Lee, X. Gao, S. Guo, D. Kopp, P. Fay, and T. Palacios, “300-GHz InAlN/GaN HEMTs With InGaN Back Barrier,” IEEE Electron Device Letters, vol. 32, no. 11, pp. 1525-1527, Nov., 2011.
[11] O. Jardel, G. Callet, J. Dufraisse, M. Piazza, N. Sarazin, E. Chartier, M. Oualli, R. Aubry, T. Reveyrand, J. C. Jacquet, M. A. Di Forte Poisson, E. Morvan, S. Piotrowicz, and S. L. Delage, “Electrical performances of AlInN/GaN HEMTs. A comparison with AlGaN/GaN HEMTs with similar technological process,” International Journal of Microwave and Wireless Technologies, vol. 3, iss. 3, pp. 301-309, June, 2011.
[12] Anna Malmros, Piero Gamarra, Marie-Antoinette di Forte-Poisson, Hans Hjelmgren, Cedric Lacam, Mattias Thorsell, Maurice Tordjman,Raphaël Aubry, and Niklas Rorsman, “Evaluation of Thermal Versus Plasma-Assisted ALD Al2O3 as Passivation for InAlN/AlN/GaN HEMTs,” IEEE Electron Device Letters, vol. 36, no. 3, pp. 235-237, March, 2015.
[13] Kai Cheng, S. Degroote, M. Leys, F. Medjdoub, J. Derluyn, B. Sijmus, M. Germain, and G. Borghs, “Very low sheet resistance AlInN/GaN HEMT grown on 100 mm Si(111) by MOVPE,” Phys. Status Solidi C , vol. 7, no. 7–8, pp. 1967–1969, July, 2010.
[14] Ji-Xian Chen, “Growth, and Characterization of AlInN/AlN/GaN Heterostruc-tures on 6-inch Si Substrates,” Master thesis, Department of Electrical Engineering, National Central University, Taoyuan City, Taiwan, 2016.
[15] M. Gonschorek, J. F. Carlin, E. Feltin, M. A. Py, and N. Grandjean, “High electron mobility lattice-matched AlInN/GaN field-effect transistor heterostructures,” Appl. Phys. Lett., vol. 89, iss. 6, pp. 062106 1-3, June, 2006.
[16] Jr-Tai Chen, Ingemar Persson, Daniel Nilsson, Chih-Wei Hsu, Justinas Palisaitis, Urban Forsberg, Per O. A˚. Persson, and Erik Janzen, “Room-temperature mobility above 2200 cm2/V-s of two-dimensional electron gas in a sharp-interface AlGaN/GaN heterostructure,” Appl. Phys. Lett., vol. 106, iss. 25, pp. 251601 1-4, June, 2015.
[17] M. Hiroki, N. Maeda, and T. Kobayashi, “Fabrication of an InAlN/AlGaN/AlN/GaN Heterostructure with a Flat Surface and High Electron Mobility,” Applied Physics Express, vol. 1, pp. 111102 1-3, Nov., 2008.
[18] S. W. Kaun, E. Ahmadi, B. Mazumder, F. Wu, E. C. H. Kyle, P. G. Burke, U. K Mishra, and J. S Speck, “GaN-based high-electron-mobility transistor structures with homogeneous lattice-matched InAlN barriers grown by plasma-assisted molecular beam epitaxy,” Semiconductor Science and Technology, vol. 29, no. 4, pp. 045011 1-15, Feb., 2014.
[19] Jeong-Gil Kim, Ki-Sik Im, Chul-Ho Won, Seung-Hyeon Kang, Sang-Heung Lee, Jong-Won Lim, Ji Heon Kim, and Jung-Hee Lee, “Growth of 10 nm-thick AlIn(Ga)N/GaNheterostructure with high electron mobility and low sheet resistance,” Phys.Status Solidi B, vol. 254, no. 8, pp. 1600731 1-4, April, 2017.
[20] Shujun Dai1, Hongwei Gao, Yu Zhou, Yaozong Zhong, Jin Wang, Junlei He, Rui Zhou, Meixin Feng, Qian Sun, and Hui Yang, “Unintentional incorporation of Ga in the nominal AlN spacer of AlInGaN/AlN/GaN Heterostructure,” J. Phys. D: Appl. Phys., vol. 51, no. 3, Dec., 2018.
[21] J. Xue, J. Zhang, Y. Hou, H. Zhou, J. Zhang, and Y. Hao, “Pulsed metal organic chemical vapor deposition of nearly latticed-matched InAlN/GaN/InAlN/GaN double-channel high electron mobility transistors,” Appl. Phys. Lett., vol. 100, pp. 013507 1-3, Dec,2012.
[22] Y. L. Fang, S. B. Dun, B. Liu, J. Y. Yin, B. C. Sheng, and T. T. Han, Z. Z. He, D. Xing, S. J. Cai, and Z. H. Feng, “High performance InAlN/GaN heterostructure and field effect transistor on sapphire substrate by MOCVD,” Proceedings of 2012 5th Global Symposium on Millimeter Waves, 2012, pp. 650-653.
[23] R. Tülek, E. Arslan, A. Bayraklı, S. Turhana, S. Gökdena, Ö. Duygulud, A.A. Kaya, T. Fırat, A. Teke, and E. Özbay, “The effect of GaN thickness inserted between two AlN layers on the transport properties of a lattice matched AlInN/AlN/GaN/AlN/GaN double channel heterostructure,” Thin Solid Films, vol. 551, pp. 146–152, Jan. ,2014.
[24] F. Lecourt, N. Ketteniss, H. Behmenburg, N. Defrance, V. Hoel, and M. Eickelkamp, et al., “InAlN/GaN HEMTs on Sapphire Substrate With 2.9-W/mm Output Power Density at 18 GHz,” IEEE Electron Device Letters, vol. 32, iss. 11, pp. 1537-1539, Nov, 2011.
[25] Y. L. Fang, Z. H. Feng, J. Y. Yin, Z. R. Zhang, Y. J. Lv, S. B. Dun, B. Liu, C. M. Li, and S. J. Cai, “Ultrathin InAlN/GaN heterostructures with high electron mobility,” Phys. Status Solidi B, vol. 252, no. 5, pp. 1006-1010, Feb., 2015
[26] X. L. Jia, X. Y. Huang, T. Yin, L. H. Yang, D. J. Chen, H. Lu, R. Zhang, and Y. D. Zheng, “Ultrasensitive detection of phosphate using ion-imprinted polymer functionalized AlInN/GaN high electron mobility transistors,” IEEE Electron Device Letters, vol. 37, no. 7, pp. 913-915, July, 2016.
[27] Xueliang Zhu, Jun Ma, Tongde Huang, Ming Li, Ka Ming Wong, and Kei May Lau, “Improved surface morphology and mobility of AlGaN/GaN HEMT grown on silicon substrate,” Phys. Status Solidi C, vol. 9, no. 3-4, pp. 473–475, March, 2012.
[28] Xiaoqing Xu, Jiebin Zhong, Hongyun So, Aras Norvilas, Christof Sommerhalter, Debbie G. Senesky, and Mary Tang, “Wafer-level MOCVD growth of AlGaN/GaN-on-Si HEMT structures with ultra-high room temperature 2DEG mobility,” AIP Advances, vol. 6, iss. 11, pp. 115016, Nov., 2016.
[29] Yiqiang Ni, Zhiyuan He, Deqiu Zhou, Yao Yao, Fan Yang, Guilin Zhou, Zhen Shen, Jian Zhong, Yue Zhen, Baijun Zhang, and Yang Liu, “The influences of AlN/GaN superlattices buffer on the characteristics of AlGaN/GaN-on-Si (1 1 1) template,” Superlattices and Microstructures, vol. 83, pp. 811-818, July, 2015.
[30] H.-P. Lee, J. Perozek, L. D. Rosario, and C. Bayram, “Investigation of AlGaN/GaN high electron mobility transistor structures on 200-mm silicon (111) substrates employing different buffer layer configurations,” Sci. Rep., vol. 6, pp. 37588 1-9, Nov., 2016.
[31] F. S. Choi, J. T. Griffiths, C. Ren, K. B. Lee, Z. H. Zaidi, P. A. Houston, I. Guiney, C. J. Humphreys, R. A. Oliver, and D. J. Wallis, “Vertical leakage mechanism in GaN on Si high electron mobility transistor buffer layers,” J. Appl. Phys., vol. 124, iss. 5, pp. 055702 1-7, July, 2018.
[32] C. G. Van de Walle and J. Neugebauer, “First-principles calculations for defects and impurities: Applications to III-nitrides,” J. Appl. Phys., vol. 95, iss. 8, pp. 3851–3879, Jan., 2004.
[33] M. J. Uren, J. Moreke, and M. Kuball, “Buffer design to minimize current collapse in GaN/AlGaN HFETs,” IEEE Transaction on Electron Devices, vol. 59, no. 12, pp. 3327–3333, Dec, 2012.
[34] Michael J. Uren, Marco Silvestri, Markus Cäsar, Godefridus Adrianus Maria Hurkx, Jeroen A. Croon, Jan Šonský, and Martin Kuball, “Intentionally Carbon-Doped AlGaN/GaN HEMTs : Necessity for Vertical Leakage Paths,” EEE Electron Device Letters, vol. 35, no. 3, pp. 327-329, March, 2014.
[35] A. F. Wrighta, “Substitutional and interstitial carbon in wurtzite GaN,” J. Appl. Phys., vol. 92, no. 5, pp. 2575-2585, Sep., 2002.
[36] J. L. Lyons, A. Janotti, and C. G. Van de Walle, “Carbon impurities and the yellow luminescence in GaN,” Appl. Phys. Lett., vol. 97, iss. 15, pp. 152108 1-3, Sep., 2010.
[37] “Nitride semiconductors:Hand Book on Materials and Devices,”Pierre Ruterana Martin, Albrecht Jörg, and Neugebauer, 2003.
[38] D. D. Koleske, A. E. Wickenden, R. L. Henry, J. C. Culbertson, and M.E.Twigg, “GaN decomposition in H2 and N2 at MOVPE temperatures and pressures,” J. Cryst. Growth, vol. 223, iss. 4, pp. 466-483, March, 2001.
[39] Zhang Jian-Li, Liu Jun-Lin, Pu Yong, Fang Wen-Qing, Zhang Meng, and Jiang Feng-Yi, “Effects of Carrier Gas on Carbon Incorporation in GaN,” Chinese Physics Letters. vol. 31, no. 3, pp. 037102 1-3, Sep., 2014.
[40] J. A. McCaulley, R. J. Shul, and V. M. Donnelly, “Kinetics of thermal decomposition of triethylgallium, trimethylgallium, and trimethylindium adsorbed on GaAs(100),” Journal of Vacuum Science & Technology A, vol. 9, iss. 6, pp. 2872, June, 1991.
[41] Qilong Bao, Tiankai Zhu, Ning Zhou, Shiping Guo, Jun Luo, and Chao Zhao, “Effect of hydrogen carrier gas on AlN and AlGaN growth in AMEC Prismo D-BlueTM MOCVD Platform,” J. Cryst. Growth, vol. 419, pp. 52-56, June. 2015.
[42] A. Dadgar, A. Strittmatter, J. Bläsing, M. Poschenrieder, O. Contreras, P. Veit, T. Riemann, F. Bertram, A. Reiher, A. Krtschil, A. Diez, T. Hempel, T. Finger, A. Kasic, M. Schubert, D. Bimberg, F. A. Ponce, J. Christen, and A. Krost, “Metalorganic chemical vapor phase epitaxy of gallium-nitride on silicon,” Physica Status Solidi C, vol. 0, no. 6 , pp. 1583-1606, April, 2003.
[43] A. Able, W. Wegscheider, K. Engl, and J. Zweck, “Growth of crack-free GaN on Si(1 1 1) with graded AlGaN buffer layers,” Journal of Crystal Growth, vol. 276, iss. 3-4, pp. 415-418, April, 2005.
[44] P. J. Lin, C. H. Tien, T. Y. Wang, C. L. Chen, S. L. Ou, B. C. Chung, and D. S. Wuu, “On the Role of AlN Insertion Layer in Stress Control of GaN on 150-mm Si (111) Substrate,” MDPI Crystals, vol. 7, iss. 5, pp. 134 1-11, May, 2017.
[45] Kai Cheng, M. Leys, S. Degroote, B. Van Daele, S. Boeykens, J. Derluyn, M. Germain, G. Van Tendeloo, J. Engelen, and G. Borghs, “Flat GaN epitaxial layers grown on Si(111) by metalorganic vapor phase epitaxy using step-graded AlGaN intermediate layers,” Journal of Electronic Materials, vol. 35, iss. 4, pp. 592-598, April, 2006.
[46] Shane Chang, Lin Lung Wei, Tien Tung Luong, Ching Chang, and Li Chang, “Threading dislocation reduction in three-dimensionally grown GaN islands on Si (111) substrate with AlN/AlGaN buffer layers,” Journal of Applied Physics, vol. 122, iss. 10, pp. 105306 1-6, Aug., 2017.
[47] J. Hertkorn, F. Lipski, R. Brueckner, T. Wunderer, S. B. Thapa, F. Scholz, A.Chuvilin, U.Kaiser, M.Beer, and J.Zweck, “Process optimization for the effective reduction of threading dislocations in MOVPE grown GaN using in situ deposited SiNx masks,” Journal of Crystal Growth, vol. 310, iss. 23, pp. 4867-4870, Nov., 2008.
[48] NTT A.T. Corporation, “AlGaN/GaN HEMT on 6 inch Si Substrate,” Japan, 2018, http://www.ntt-at.com/product/epitaxial/
[49] EpiGaN Co., “GaN Epiwafers for Power Switching,” Belgium, 2018, https://www.epigan.com/data/files/EpiGaNHV650V%20leaflet%20Feb%202017.pdf
[50] ALLOS Semiconductors, “State of ALLOS’ product for 1200 V high power electronics applications,” Germany, 2018, http://www.allos-semiconductors.com/wp-ontent/uploads/2018/02/1802 -ALLOS-1200-V-product-status.pdf
[51] Jie Su, Eric A. Armour, Balakrishnan Krishnan, Soo Min Lee, and George D. Papasouliotis, “Stress engineering with AlN/GaN superlattices for epitaxial GaN on 200 mm silicon substrates using a single wafer rotating disk MOCVD reactor,” J. Mater. Res., vol. 30, iss. 19, pp. 2846-2858, Oct., 2015.
[52] J.R. Gonga, C.W. Huanga, S.F. Tsenga, T.Y. Linb, K.M. Lina, W.T. Liaoa, Y.L. Tsaia, B.H. Shic, and C.L. Wanga, “Behaviors of AlxGa1-xN(0.5<x<1.0)/GaN short period strained-layer superlattices on the threading dislocation density reduction in GaN films,” Journal of Crystal Growth, vol. 260, iss. 1-2, pp. 73–78, Jan., 2004.
[53] Liu Zhe, Wang Xiao-Liang, Wang Jun-Xi, Hu Guo-Xin, Guo Lun-Chun, and Li Jin-Min, “The influence of AlN/GaN superlattice intermediate layer on the properties of GaN grown on Si(111) substrates,” Chin. Phys. Soc., vol. 16, no. 5, pp. 1468-1471, May., 2007.
[54] L. W. Sang, Z. X. Qin, H. Fang, X. R. Zhou, Z. J. Yang, B. Shen, and G. Y. Zhang, “Study on threading dislocations blocking mechanism of GaN/AlxGa1−xN Superlattices,” Applied Physics Letters, vol. 92, iss. 19, pp. 192112 1-3, May, 2008.
[55] Yiqiang Ni, Zhiyuan He, Fan Yang, Deqiu Zhou, Yao Yao, Guilin Zhou, Zhen Shen, Jian Zhong, Yue Zhen, Zhisheng Wu, Baijun Zhang, and Yang Liu, “Effect of AlN/GaN superlattice buffer on the strain state in GaN-on-Si(111) system,” Japanese Journal of Applied Physics, vol. 54, no. 1, pp. 015505 1-5, Oct., 2015.
[56] Yuya Yamaoka, Ken Kakamu, Akinori Ubukata, Yoshiki Yano, Toshiya Tabuchi, Koh Matsumoto, and Takashi Egawa, “Influence of the Al content of the AlGaN buffer layer in AlGaN/GaN high-electron-mobility transistor structures on a Si substrate,” Phys. Status Solidi A, pp. 1600618 1-5, DOI 10.1002, pssa. 201600618, Jan., 2017.
[57] Po-Jung Lina,d, Shih-Yung Huangb, Wei-Kai Wangc, Che-Lin Chend, Bu-Chin Chungd, and Dong-Sing Wuu, “Controlling the stress of growing GaN on 150-mm Si (111) in an AlN/GaN strained layer superlattice,” Applied Surface Science, vol. 362, pp. 434-440, 2017.
[58] Zijun Chen, Liuan Li, Yue Zheng, Yiqiang Ni, Deqiu Zhou, Liang He, Fan Yang, Lei He, Zhisheng Wu, Baijun Zhang, and Yang Liu, “Influence of the Aln/Gan Superlattices Buffer Thickness on the Electrical Properties of Algan/Gan HFET on Si Substrate,” SSLChina: IFWS, DOI:10.1109, IFWS.2016.7803764, Jan., 2016.
[59] Y. Sugawara, Y. Ishikawa, A. Watanabe, M. Miyoshi, and T. Egawa, “Characterization of dislocations in GaN layer grown on 4-inch Si(111) with AlGaN/AlN strained layer superlattices,” Japanese Journal of Applied Physics, vol. 55, no. 5S, pp. 05FB08 1-6, April, 2016.
[60] L. Pan, X. Dong, J. Ni, Z. Li, Q. Yang, D. Peng, and C. Li, “Growth of compressively-strained GaN films on Si(111) substrates with thick AlGaN transition and AlGaN superlattice buffer layers,” Phys. Status Solidi C, vol. 13, no. 5-6, pp. 181-185, Jan., 2016.
[61] Q. Yang, Z. Li, L. Pan, W. Luo, and X. Dong, “Role of different kinds of superlattices on the strain engineering of GaN films grown on Si (111),” Superlattices and Microstructures, vol. 109, pp. 249-253, Sep., 2017.
[62] Y. Ni, Z. He, F. Yang, D. Zhou, Y. Yao, G. Zhou, Z. Shen, J. Zhong, Y. Zhen, Z. Wu, B. Zhang, and Y. Liu, “Effect of AlN/GaN superlattice buffer on the strain state in GaN-on-Si(111) system,” Jpn. J. Appl. Phys., vol. 54, no. 1, pp. 015505 1-5, Oct., 2015.
[63] Zijun Chen, Liuan Li, Yue Zheng, Yiqiang Ni, Deqiu Zhou, Liang He, Fan Yang, Lei He, Zhisheng Wu, Baijun Zhang, and Yang Liu, “Influence of the Aln/Gan Superlattices Buffer Thickness on the Electrical Properties of Algan/Gan HFET on Si Substrate,” SSLChina: IFWS, DOI:10.1109, IFWS.2016.7803764, Jan., 2016.
[64] Q. Yang, Z. Li, L. Pan, W. Luo, and X. Dong, “Role of different kinds of superlattices on the strain engineering of GaN films grown on Si (111),” Superlattices and Microstructures, vol. 109, pp. 249-253, Sep., 2017.
[65] L. Pan, X. Dong, J. Ni, Z. Li, Q. Yang, D. Peng, and C. Li, “Growth of compressively-strained GaN films on Si(111) substrates with thick AlGaN transition and AlGaN superlattice buffer layers,” Phys. Status Solidi C, vol. 13, no. 5-6, pp. 181-185, Jan., 2016.
[66] Jie Su, Eric A. Armour, Balakrishnan Krishnan, Soo Min Lee, and George D. Papasouliotis, “Stress engineering with AlN/GaN superlattices for epitaxial GaN on 200 mm silicon substrates using a single wafer rotating disk MOCVD reactor,” J. Mater. Res., vol. 30, iss. 19, pp. 2846-2858, Oct., 2015.
[67] Shinji Teraoa, Motoaki Iwayaa, Tomoaki Sanoa, Tetsuya Nakamuraa, Satoshi Kamiyamab, Hiroshi Amanob, and Isamu Akasakib, “Relaxation of misfit-induced stress in nitride-based heterostructures,” Journal of Crystal Growth, vol. 237, iss. 1, pp. 947-950, April, 2002.
[68] N. Kuwano, T. Tsuruda, Y. Adachi, S. Terao, S. Kamiyama, H. Amano, and I. Akasaki, “Annihilation of Threading Dislocations in GaN/AlGaN,” phys. stat. sol. A, vol. 192, no. 2, pp. 366-370, March, 2002.
[69] G. G. Stoney, “The Tension of Metallic Films deposited by Electrolysis,” Proc. R. Soc. A, vol. 82, pp. 172-173, Jan., 1909.
[70] W. C. Wang, P. Y. Chen, and Y. T. Wu, “Investigation of Non-equibiaxial Thin Film Stress by Using Stoney Formula,” Advancement of Optical Methods in Experimental Mechanics, 2016, pp. 307-319.
[71] Ezgi Dogmus, Riad Kabouche, Sylvie Lepilliet, Astrid Linge, Malek Zegaoui, Hichem Ben-Ammar, Marie-Pierre Chauvat, Pierre Ruterana, Piero Gamarra, Cédric Lacam, Maurice Tordjman, and Farid Medjdoub, “InAlGaN/GaN HEMTs at Cryogenic Temperatures,” MDPI, Electronics, vol. 5, iss. 31, doi:10.3390, June, 2016.
[72] J. Zhang, X. Yang, J. Cheng, Y. Feng, P. Ji, A. Hu, F. Xu, N. Tang, X. Wang, and B. Shen, “Enhanced transport properties in InAlGaN/ AlN/GaN heterostructures on Si (111) substrates: The role of interface quality,” Appl. Phys. Lett. vol. 110, iss. 17, pp. 172101 1-4, April, 2017.
[73] Farid Medjdoub, Riad Kabouche, Astrid Linge, Bertrand Grimbert, Malek Zegaoui, Piero Gamarra, Cédric Lacam, Maurice Tordjman, and Marie-Antoinette di Forte-Poisson, “High electron mobility in high-polarization sub-10nm barrier thickness InAlGaN/GaN heterostructure,” Applied Physics Express, vol. 8, no. 10, pp. 101001 1-4, Aug., 2015.
[74] S. Zhang, M. C. Li, Z. H. Feng, B. Liu, J. Y. Yin and L. C. Zhao, “High electron mobility and low sheet resistance in lattice-matched AlInN/AlN/GaN/AlN/GaN double-channel heterostructure,” Appl. Phys. Lett., vol. 95, iss. 21, pp. 212101 1-3, Oct., 2009.
[75] J. Xie, X. Ni, M. Wu, J. H. Leach, Ü. Özgür and H. Morkoç, “High electron mobility in nearly lattice-matched AlInN/AlN/GaN hetero-structure field effect transistors,” Appl. Phys. Lett., vol. 91, iss. 13, pp. 132116 1-3, Sep., 2007.
[76] Atsushi Yamada, Tetsuro Ishiguro, Junji Kotani, Shuichi Tomabechi, Norikazu Nakamura, and Keiji Watanabe, “Advantages of the AlGaN spacer in InAlN high-electron-mobility transistors grown using metalorganic vapor phase epitaxy,” Japanese Journal of Applied Physics, vol. 55, no. 5S, pp. 05FK03 1-5, April, 2016.
[77] A. Watanabe, J. J. Freedsman, Y. Urayama, D. Christy, and T. Egawa, “Thermal stability of an InAlN/GaN heterostructure grown on silicon by metal-organic chemical vapor deposition,” Journal of Applied Physics, vol. 118, iss. 23, pp. 235705 1-6, Dec. 2015.
[78] Liu Bo, Yin Jiayun, Lü Yuanjie, Dun Shaobo, Zhang Xiongwen, Feng Zhihong, and Cai Shujun, “Unstrained InAlN/GaN heterostructures grown on sapphire substrates by MOCVD,” Chinese Institute of Electronics, vol. 35, no. 11, pp. 113005 1-4, Nov., 2014.
[79] M. Gonschorek, J. F. Carlin, E. Feltin, M. A. Py, and N. Grandjean, “High electron mobility lattice-matched AlInN/GaN field-effect transistor heterostructures,” Appl. Phys. Lett., vol. 89, iss. 6, pp. 062106 1-3, June, 2006.
[80] H.W.Then, L.A.Chow, S.Dasgupta, S.Gardner, M.Radosavljevic, V.R.R-ao, S.H.Sung, G.Yang, R.S.Chau, “High-Performance Low-Leakage Enhancement-Mode High-K Dielectric GaN MOSHEMTs for Energy-Efficient, Compact Voltage Regulators and RF Power Amplifiers for Low-Power Mobile SoCs,” Symposium on VLSI Technology Digest of Technical Papers, 2015, pp. T202-T203.
[81] H. Behmenburg, L. Rahimzadeh Khoshroo, C. Mauder, N. Ketteniss, K. H. Lee, M. Eickelkamp, M. Brast, D. Fahle, J. F. Woitok, A. Vescan, H. Kalisch, M. Heuken, and R. H. Jansen, “In situ SiN passivation of AlInN/GaN heterostructures by MOVPE,” Phys. Status Solidi C, vol. 7, no. 7-8, pp. 2104-2106, Nov., 2010.
[82] Jie Zhang, Xuelin Yang, Jianpeng Cheng, Yuxia Feng, Panfeng Ji, Anqi Hu, Fujun Xu, Ning Tang, Xinqiang Wang, and Bo Shen, “Enhanced transport properties in InAlGaN/AlN/GaN heterostructures on Si (111) substrates: The role of interface quality,” Appl. Phys. Lett., vol. 110, iss. 17, pp. 172101 1-4, April, 2017.
[83] Jeong-Gil Kim, Ki-Sik Im, Chul-Ho Won, Seung-Hyeon Kang, Sang-Heung Lee, Jong-Won Lim, Ji Heon Kim, and Jung-Hee Lee, “Growth of 10 nm-thick AlIn(Ga)N/GaNheterostructure with high electron mobility and low sheet resistance,” Phys.Status Solidi B, vol. 254, no. 8, pp. 1600731 1-4, April, 2017.
[84] Farid Medjdoub, Riad Kabouche, Astrid Linge, Bertrand Grimbert, Malek Zegaoui, Piero Gamarra, Cédric Lacam, Maurice Tordjman, and Marie-Antoinette di Forte-Poisson, “High electron mobility in high-polarization sub-10nm barrier thickness InAlGaN/GaN heterostructure,” Applied Physics Express, vol. 8, no. 10, pp. 101001 1-4, Aug., 2015.
[85] R. Tülek, E. Arslan, A. Bayraklı, S. Turhana, S. Gökdena, Ö. Duygulud, A.A. Kaya, T. Fırat, A. Teke, and E. Özbay, “The effect of GaN thickness inserted between two AlN layers on the transport properties of a lattice matched AlInN/AlN/GaN/AlN/GaN double channel heterostructure,” Thin Solid Films, vol. 551, pp. 146–152, Jan., 2014.
[86] A Teke1, S Gökden, R Tülek, J H Leach, Q Fan, J Xie, Ü Özgür, H Morkoç, S B Lisesivdin, and E Özbay, “The effect of AlN interlayer thicknesses on scattering processes in lattice-matched AlInN/GaN two-dimensional electron gas heterostructures,” New Journal of Physics, vol. 11, iss. 11, pp. 063031 1-12, March, 2009.
[87] Kai Cheng, S. Degroote, M. Leys, F. Medjdoub, J. Derluyn, B. Sijmus, M. Germain, and G. Borghs, “Very low sheet resistance AlInN/GaN HEMT grown on 100 mm Si(111) by MOVPE,” Phys. Status Solidi C , vol. 7, no. 7–8, pp. 1967–1969, July, 2010.
[88] Ronghua Wang, Guowang Li, S, Jai Verma, Berardi Sensale-Rodriguez, Tian Fang, Jia Guo, Zongyang Hu, Oleg Laboutin, Yu Cao, Wayne Johnson, Gregory Snider, Patrick Fay, Debdeep Jena, and Huili (Grace) Xing, “220-GHz Quaternary Barrier InAlGaN/AlN/GaN HEMTs,” IEEE Electron Device Letters, vol. 32, no. 9, pp. 1215-1217, Sep., 2011.
[89] J. Xie, X. Ni, M. Wu, J. H. Leach, Ü. Özgür and H. Morkoç, “High electron mobility in nearly lattice-matched AlInN/AlN/GaN hetero-structure field effect transistors,” Appl. Phys. Lett., vol. 91, iss. 13, pp. 132116 1-3, Sep., 2007.
[90] NTT A.T. Corp., “InAlN / GaN HEMT,” Japan, 2018, http://www.ntt-at.com/product/docs/InAlN-hemt.pdf
[91] Y. Ni, Z. He, F. Yang, D. Zhou, Y. Yao, G. Zhou, Z. Shen, J. Zhong, Y. Zhen, Z. Wu, B. Zhang, and Y. Liu, “Effect of AlN/GaN superlattice buffer on the strain state in GaN-on-Si(111) system,” Jpn. J. Appl. Phys., vol. 54, no. 1, pp. 015505 1-5, Oct., 2015.
[92] Achraf Ben Amar, Marc Faucher, Virginie Brandli, Yvon Cordier and Didier Théron1, “Young’s modulus extraction of epitaxial heterostructure AlGaN/GaN for MEMS application,” Phys. Status Solidi A, vol. 211, no. 7, pp. 1655-1659, March, 2014.
指導教授 綦振瀛(Jen-Inn Chyi) 審核日期 2019-7-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明