參考文獻 |
[1] 廖偉辰,「工業馬達驅動系統節電分析」,核研所─能源簡析,2017年4月。
[2] 陳婉箐,「加速馬達產業升級,跨入高效新世代」,工業技術與資訊月刊,304期,2017年02月號。
[3] 經濟部能源局,「急起直追,2016年與全球先進國家同步」,能源報導-封面故事三,2014年10月號。
[4] A. T. D. Almeida, F. J. T. E. Ferreira and A. Q. Duarte, “Technical and Economical Considerations on Super High-Efficiency Three-Phase Motors,” IEEE Trans. Ind. Appl., vol. 50, no. 2, pp. 1274-1285, Apr. 2014.
[5] 吳長恩,“具寬速度控制範圍之同步磁阻馬達驅動器研製”,碩士論文,國立台北科技大學電機工程系,民國一百零五年。
[6] 黃雅琪,「永磁與磁阻馬達市場發展機會與挑戰」,機械工業雜誌,415期,2017年10月號。
[7] A. T. D. Almeida, “Electric Motors and Variable Speed Drives Efficiency – Adjusting MEPS to Technology Developments,” Motor Summit Zurich, 11/12 Oct. 2016.
[8] S. Taghavi and P. Pillay, “A sizing methodology of the synchronous reluctance motor for traction applications,” IEEE J. Emerg. Sel. Topics Power Electron., vol. 2, no. 2, pp. 329–340, Jun. 2014.
[9] “ABB SynRM motor & drive package – Super premium efficiency for HVAC application,” 8th edition of the european hpc infrastructure workshop, Mar. 2017
[10] T. Senjyu, T. Shingaki, and K. Uezato, “Sensorless vector control of synchronous reluctance motors with disturbance torque observer,” IEEE Trans. Ind. Electron., vol. 48, no. 2, pp. 402–407, Apr. 2001.
[11] G. Pellegrino, F. Cupertino, and C. Gerada, “Automatic design of synchronous reluctance motors focusing on barrier shape optimization,” IEEE Trans. Ind. Appl., vol. 51, no. 2, pp. 1465–1474, Mar./Apr. 2015.
[12] A. Vagati, M. Pastorelli, G. Franceschini, and S. C. Petrache, “Design of low-torque-ripple synchronous reluctance motors,” IEEE Trans. Ind. Appl., vol. 34, no. 4, pp. 758–765, Jul./Aug. 1998.
[13] F. J. W. Barnard, W. T. Villet, and M. J. Kamper, “Hybrid active-flux and arbitrary injection position sensorless control of reluctance synchronous machines,” IEEE Trans. Ind. Appl., vol. 51, no. 5, pp. 3899–3906, Sept./Oct. 2015.
[14] W. T. Villet and M. J. Kamper, “Variable-gear EV reluctance synchronous motor drives–an evaluation of rotor structures for position-sensorless control,” IEEE Trans. Ind. Electron., vol. 61, no. 10, pp. 5732–5740, Oct. 2014.
[15] M. Ferrari, N. Bianchi, A. Doria, and E. Fornasiero, “Design of synchronous reluctance motor for hybrid electric vehicles,” IEEE Trans. Ind. Appl., vol. 51, no. 4, pp. 3030–3040, Jul./Aug. 2015.
[16] I. H. Lin, M. F. Hsieh, H. F. Kuo, and M. C. Tsai, “Improved accuracy for performance evaluation of synchronous reluctance motor,” IEEE Trans. Magn., vol. 51, no. 11, Nov. 2015.
[17] N. Bianchi, M. Degano, and E. Fornasiero, “Sensitivity analysis of torque ripple reduction of synchronous reluctance and interior PM motors,” IEEE Trans. Ind. Appl., vol. 51, no. 1, pp. 187–195, Jan./Feb. 2015.
[18] C. T. Liu, B. Y. Chang, K. Y. Hung, and S. Y. Lin, “Cutting and punching impacts on laminated electromagnetic steels to the designs and operations of synchronous reluctance motors,” IEEE Trans. Ind. Appl., vol. 51, no. 4, pp. 3515–3520, Jul./Aug. 2015.
[19] F. N. Isaac, A. A. Arkadan and A. El-Antably, “Characterization of axially laminated anisotropic-rotor synchronous reluctance motors,” IEEE Trans. Energy Convers., vol. 14, no. 3, pp. 506-611, Sep 1999.
[20] J. Kolehainen, “Synchronous reluctance motor with form blocked rotor,” IEEE Trans. Energy Convers., vol. 25, no. 2, pp. 450-456, Jun. 2010.
[21] S. Cai, Jianxin. Shen, H. Hao, and M. Jin, “Design Methods of Transversally Laminated Synchronous Reluctance Mechines,” CES Trans. Electrical Machines and Systems, vol. 1, no. 2, pp. 164-173, 2017.
[22] E. Daryabeigi, H. A. Zarchi, G. R. A. Markadeh, J. Soltani, and F. Blaabjerg, “Online MTPA control approach for synchronous reluctance motor drives based on emotional controller,” IEEE Trans. Power Electron., vol. 30, no. 4, pp. 2157–2166, Apr. 2015.
[23] S. Bolognani, L. Peretti, and M. Zigliotto, “Online MTPA control strategy for DTC synchronous-reluctance-motor drives,” IEEE Trans. Power Electron., vol. 26, no. 1, pp. 20–28, Jan. 2011.
[24] H. Pairo and A. Shoulaie, “Operating region and maximum attainable speed of energy-efficient control methods of interior permanent-magnet synchronous motors,” IET Power Electron., vol. 10, no. 5, pp. 555–567, Apr. 2017.
[25] A. Yousefi-Talouki, P. Pescetto, G. Pellegrino, and I. Boldea, “Combined active flux and high-frequency injection methods for sensorless direct-flux vector control of synchronous reluctance machines,” IEEE Trans. Power Electron., vol. 33, no. 3, pp. 2447–2457, Mar. 2018.
[26] Y. Inoue, S. Morimoto, and M. Sanada, “A novel control scheme for maximum power operation of synchronous reluctance motors including maximum torque per flux control,” IEEE Trans. Ind. Appl., vol. 47, no. 1, pp. 115–121, Jan./Feb. 2011.
[27] S. Jung, J. Hong, and K. Nam, “Current minimizing torque control of the IPMSM using Ferrari’s method,” IEEE Trans. Power Electron., vol. 28, no. 12, pp. 5603–5617, Dec. 2013.
[28] T. H. Liu, Y. Chen, M. J. Wu, and B. C. Dai, “Adaptive controller for an MTPA IPMSM drive system without using a high-frequency sinusoidal generator,” IET J. Eng., vol. 2017, no. 2, pp. 13–25, 2017.
[29] T. Sun, J. Wang, and X. Chen, “Maximum torque per ampere (MTPA) control for interior permanent magnet synchronous machine drives based on virtual signal injection,” IEEE Trans. Power Electron., vol. 30, no. 9, pp. 5036–5045, Sep. 2015.
[30] A. Balamurali, G. Feng, C. Lai, J. Tjong, and N. C. Kar, “Maximum efficiency control of PMSM drives considering system losses using gradient descent algorithm based on DC power measurement,” IEEE Trans. on Energy Conver., vol. 33, no. 4, pp. 2240–2249, Dec. 2018.
[31] H. W. de Kock and M. J. Kamper, “Dynamic control of the permanent magnet-assisted reluctance synchronous machine,” IET Elect. Power Appl., vol. 1, no. 2, pp. 153–160, Mar. 2007.
[32] T. Sun, J. Wang, M. Koc, and X. Chen, “Self-learning MTPA control of interior permanent-magnet synchronous machine drives based on virtual signal injection,” IEEE Trans. Ind. Appl., vol. 52, no. 4, pp. 3062–3070, Jul./Aug. 2016.
[33] M. P. Kazmierkowski, R. Krishnan, and F. Blaabjerg, Control in Power Electronics-Selected Problems. New York: Academic, 2002.
[34] R. J. Wai and Y. Yang, “Design of backstepping direct power control for three-phase PWM rectifier,” IEEE Trans. Ind. Appl., early access, 2019.
[35] T. H. Liu, H. T. Pu, and C. K. Lin, “Implementation of an adaptive position control system of a permanent-magnet synchronous motor and its application,” IET Elect. Power Appl., vol. 4, no. 2, pp. 121–130, Feb. 2010.
[36] R. J. Wai, J. X. Yao, and J. D. Lee, ‘‘Backstepping fuzzy-neural-network control design for hybrid maglev transportation system,’’ IEEE Trans. Neural Netw. Learn. Syst., vol. 26, no. 2, pp. 302–317, Feb. 2015.
[37] F. J. Lin, S. G. Chen, and C. W. Hsu, “Intelligent backstepping control using recurrent feature selection fuzzy neural network for synchronous reluctance motor position servo drive system,” IEEE Trans. Fuzzy Syst., vol. 27, no. 3, pp. 413–427, Mar. 2019.
[38] C. T. Lin and C. S. G. Lee, Neural Fuzzy Systems. Englewood Cliffs, NJ, USA: Prentice-Hall, 1996.
[39] D. Chakraborty and N. R. Pal, “Integrated feature analysis and fuzzy rule-based system identification in a neuro-fuzzy paradigm,” IEEE Trans. Syst. Man Cybern. B, vol. 31, pp. 391–400, Jun. 2001.
[40] R. J. Wai and R. Muthusamy, “Design of fuzzy-neural-network-inherited backstepping control for robot manipulator including actuator dynamics,” IEEE Trans. Fuzzy Syst., vol. 22, no. 4, pp. 709–722, Aug. 2014.
[41] F. J. Lin, I F. Sun, K. J. Yang, and J. K. Chang, “Recurrent fuzzy neural cerebellar model articulation network fault-tolerant control of six-phase permanent magnet synchronous motor position servo drive,” IEEE Trans. Fuzzy Syst., vol. 24, no. 1, pp. 153–167, Feb. 2016.
[42] S. S. Yang and C. S. Tseng, “An orthogonal neural network for function approximation,” IEEE Trans. Syst., Man, Cybern. B, vol. 26, no. 5, pp. 779–783, Oct. 1996.
[43] J. C. Patra and C. Bornand, “Nonlinear dynamic system identification using Legendre neural network,” Proc. Int. Joint Conf. Neural Netw. (IJCNN), Barcelona, Spain, pp. 1–7, 2010.
[44] D. M. Sahoo and S. Chakraverty, “Functional link neural network learning for response prediction of tall shear buildings with respect to earthquake data,” IEEE Trans. Syst., Man, Cybern., Syst., vol. 48, no. 1, pp. 1–10, Jan. 2018.
[45] C. H. Lin, “Novel adaptive modified recurrent Legendre neural network control for a PMSM servo-driven electric scooter with V-belt continuously variable transmission system dynamics,” Trans. of the Institute of Meas. and Control, vol. 37, no. 10, pp. 1181–1196, 2015.
[46] Y. Y. Lin, J. Y. Chang, and C. T. Lin, “Identification and prediction of dynamic systems using an interactively recurrent self-evolving fuzzy neural network,” IEEE Trans. Neural Netw. Learn. Syst., vol. 24, no. 2, pp. 310–321, Feb. 2013.
[47] C. H. Chen, C. J. Lin, and C. T. Lin, “A functional-link-based neuro-fuzzy network for nonlinear system control,” IEEE Trans. Fuzzy Syst., vol. 16, no. 5, pp. 1362–1378, Oct. 2008.
[48] S. Y. Chen and F. J. Lin, “Robust nonsingular terminal sliding-mode control for nonlinear magnetic bearing system,” IEEE Trans. Control Syst. Technol., vol. 19, no. 3, pp. 636–643, May 2011.
[49] A. I. Rasiah, R. Togneri, and Y. Attikiouzel, “Modelling 1 -D signals using Hermite basis functions” IEE Proc.-Vis. Image Signal Process., vol. 144, no. 6, pp. 345–354, Dec. 1997.
[50] L. Ma and K. Khorasani, “Constructive feedforward neural networks using Hermite polynomial activation functions,” IEEE Trans. Neural Netw., vol. 16, no. 4, pp. 821–833, Jul. 2005.
[51] F. J. Lin, M. S. Huang, S. G. Chen, and C. W. Hsu, “Intelligent maximum torque per ampere tracking control of synchronous reluctance motor using recurrent Legendre fuzzy neural network,” IEEE Trans. Power Electron., early access, 2019.
[52] B. J. Choi, S. W. Kwak, and B. K. Kim, “Design and stability analysis of single-input fuzzy logic controller,” IEEE Trans. Syst., Man, Cybern. B, Cybern., vol. 30, no. 2, pp. 303–309, Apr. 2000.
[53] 陳世剛,“利用函數連結放射狀基底函數網路於適應性步階迴歸控制六相永磁同步馬達定位驅動系統”,碩士論文,國立中央大學電機系,民國一百零五年。
[54] 黃泰寅,“新型每安培最大轉矩控制同步磁阻馬達驅動系統之開發”,碩士論文,國立中央大學電機系,民國一百零六年。
[55] TMS320F2807x Piccolo Microcontrollers Datasheet, Texas Instruments.
[56] P. Pillay, R. G. Haarley, and E. J. Odendal, “A comparison between star and delta connected induction motors when supplied by current source inverters,” Electric Power Systems Research., vol. 8, no. 1, pp. 41–51, Oct. 1984.
[57] Z. Haisen, L. Xiaofang, H. Jia, and L. Yingli, “The influence of wye and delta connection on induction motor losses taking slot opening and skew effect into account,” Proc. IEEE International Electric Machines and Drives Conference, May 2009.
[58] M. N, Ibrahim, P. Sergeant, and E. E. M. Rashad, “Combined Star-Delta Windings to Improve Synchronous Reluctance Motor Performance,” IEEE Trans. Energy Convers., vol. 31, no. 4, pp. 1479–1487, Dec. 2016.
[59] R. Rajabi Moghaddam, F. Magnussen, and C. Sadarangani, “Theoretical and experimental reevaluation of synchronous reluctance machine,” IEEE Trans. Ind. Electron., vol. 57, no. 1, pp. 6–13, Jan. 2010.
[60] J. J. E. Slotine and W. Li, Applied Nonlinear Control. Englewood Cliffs, NJ: Prentice-Hall, 1991.
[61] Z. Qu, R. A. Hull, and J. Wang, “Globally Stabilizing Adaptive Control Design for Nonlinearly-Parameterized Systems,” IEEE Trans. Autom. Control., vol. 51, no. 6, pp. 1073–1079, Jun. 2006.
[62] H. A. Zarchi, J. Soltani, and G. A. Markadeh, “Adaptive input-output feedback linearization-based torque control of synchronous reluctance motor without mechanical sensor,” IEEE Trans. Ind. Electron., vol. 57, no. 1, pp. 375–384, Jan. 2010.
[63] Y. A. I. Mohamed and Tsing K. Lee, “Adaptive self-tuning MTPA vector controller for IPMSM drive system,” IEEE Trans. Energy Convers, vol. 21, no. 3, pp. 636–644, Sep. 2006.
[64] 許效豪,“無轉軸偵測元件同步磁阻電動機直接轉矩控制驅動系統之研究”,碩士論文,國立臺灣科技大學電機工程系,民國九十四年。
[65] J. Ahn, S. B. Lim, K. C. Kim, J. Lee, J. H. Choi, S. Kim and J. P. Hong, “Field weakening control of synchronous reluctance motor for electric Power steering,” IET Elec. Power Appl., vol. 1, no. 4, pp. 565-570, Jul. 2007.
[66] S.M.Ferdous, P. Garcia, M. A. M. Oninda, and Md. A. Hoque , “MTPA and Field Weakening Control of Synchronous Reluctance Motor,” Proc. 9th International Conference on Electrical and Computer Engineering, pp. 598-601, Dec. 2016.
[67] C. Mademlis, “Compensation of magnetic saturation in maximum torque to current vector controlled synchronous reluctance motor drives,” IEEE Trans. Energy Convers., vol. 18, no. 3, pp. 379-385, Sep. 2003.
[68] F. J. Lin, K. C. Lu, T. H. Ke, B. H. Yang, and Y. R. Chang, “Reactive power control of three-phase grid-connected PV system during grid faults using Takagi–Sugeno–Kang probabilistic fuzzy neural network control,” IEEE Trans. Ind. Electron., vol. 62, no. 9, pp. 5516–5528, Sep. 2015.
[69] S. Y. Chen and M. H. Song, “Energy-saving dynamic bias current control of active magnetic bearing positioning system using adaptive differential evolution,” IEEE Trans. Syst., Man, Cybern., Syst., vol. 49, no. 5, pp. 942–953, May. 2019.
[70] A. Yousefi-Talouki, P. Pescetto, and G. Pellegrino, “Sensorless direct flux vector control of synchronous reluctance motors including standstill, MTPA, and flux weakening,” IEEE Trans. Ind. Appl., vol. 53, no. 4, pp. 3598–3608, Jul./Aug. 2017.
[71] K. H. Nam, AC Motor Control and Electric Vehicle Applications. Boca Raton, FL, USA: CRC Press, 2010.
[72] C. Lai, G. Feng, K. Mukherjee, J. Tjong, and N. Kar, “Maximum torque per ampere control for IPMSM using gradient descent algorithm based on measured speed harmonics,” IEEE Trans Ind. Informat., vol. 14, no. 4, pp. 1424–1435, Apr. 2018.
[73] G. Zhang, and J. Furusho, “Speed Control of Two-Inertia System by PI/PID Control,” IEEE Trans. Ind. Electron., vol. 47, no. 3, pp. 603-609, 2000.
[74] D. L. Logan, A First Course in the Finite Element Method, MA: Cengage Learning, 2017.
[75] 賴要任,鍾國光,電機電子有限元素法入門,全華圖書,台北市,民國七十七年十一月。
[76] ANSYS, Module 01: Basics Introduction to ANSYS Maxwell, ANSYS,Inc, 2016.
[77] JFE, Electrical Steel Sheets, JFE Steel Corporation, 2015.
[78] A. Kenny, A. Palazzolo, G. T. Montague, and A. F. Kascak, “Theory and Test Correlation for Laminate Stacking Factor Effect on Homopolar Bearing Stiffness.” ASME, Engineering for Gas Turbines and Power, vol. 126, no. 1, pp. 142-146, Jan. 2004.
[79] C. E. Hwang, Y. Lee, and S. K. Sul, “Analysis on Position Estimation Error in Position-Sensorless Operation of IPMSM Using Pulsating Square Wave Signal Injection,” IEEE Trans Ind. Informat., vol. 55, no. 1, pp. 458-470, 2019.
[80] C. Choi, W. Lee, S. O. Kwon, and J. P. Hong, “Experimental Estimation of Inductance for Interior Permanent Magnet Synchronous Machine Considering Temperature Distribution,” IEEE Trans. Magn., vol. 49, no. 6, pp. 2290-2296, 2013.
[81] M. S. Huang, K. C. Chen, C. H. Chen, Z . F. Li, and S. W. Hung, “Torque control in constant power region for IPMSM under six-step voltage operation,” IET Elec. Power Appl., vol. 13, Iss. 2, pp. 181-189, 2019.
[82] P. V. Kokotovic, “The joy of feedback: Nonlinear and adaptive,” IEEE Control. Syst. Mag., vol. 12, pp. 7–17, Jun. 1992.
[83] M. Kristic, I. Kanellakopoulis, and P. V. Kokotovic, Nonlinear and Adaptive Control Design, New York: Wiley, 1995.
[84] C. K. Lin, L. C. Fu, T. H. Liu, and B. H. Chou, “Passivity-based adaptive backstepping PI sliding-mode position control for synchronous reluctance motor drives,” Asian Control Conf. 8th, pp. 245-250, May 2011.
[85] R. J. Wai and H. H. Chang, “Backstepping wavelet neural network control for indirect field-oriented induction motor drive,” IEEE Trans. Neural Netw., vol. 15, no. 2, pp. 367–82, Mar. 2004.
[86] Z. Li, C. Y. Su, G. Li, and H. Su, “Fuzzy approximation-based adaptive backstepping control of an exoskeleton for human upper limbs,” IEEE Trans. Fuzzy Syst., vol. 23, no. 3, pp. 555–566, Jun. 2015.
[87] C. C. Liao, C. H. Chen, Y. F. Peng, and S. C. Wu, “A combined backstepping and wavelet neural network control approach for mechanical system,” Asian Control Conf. (ASCC) 9th, pp. 1–6, Jun. 2013.
[88] D. Mayne, “Nonlinear and Adaptive Control Design-M. Kristic, I. Kanellakopoulis, and P. V. Kokotovic (New York: Wiley, 1995),” IEEE Trans. Autom. Control, vol. 41, no. 12, pp. 1849–1853, Dec.1996. (Book Review).
[89] J. Linares-Flores, C. García-Rodríguez, H. Sira-Ramírez, and O. D. Ramírez-Cárdenas, “Robust backstepping tracking controller for low-speed PMSM positioning system: design, analysis, and implementation, ” IEEE Trans. Ind. Informat., vol. 11, no. 5, pp. 1130–1141, Oct. 2015.
[90] F. J. Lin, M. S. Huang, P. Y. Yeh, H. C. Tsai, and C. H. Kuan, “DSP-based probabilistic fuzzy neural network control for Li-ion battery charger,” IEEE Trans. Power Electron., vol. 27, no. 8, pp. 3782–3794, Aug. 2012.
|