博碩士論文 106521081 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:64 、訪客IP:18.117.70.64
姓名 許哲瑋(Che-Wei Hsu)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 同步磁阻馬達驅動系統之智慧型每安培最大轉矩追蹤控制
(Intelligent Maximum Torque per Ampere Tracking Control of Synchronous Reluctance Motor Drive System)
相關論文
★ 機場地面燈光更新工程 -以桃園國際機場南邊跑滑道為例★ 多功能太陽能微型逆變器之研製
★ 應用於儲能系統之智慧型太陽光電功率平滑化控制★ 利用智慧型控制之三相主動式電力濾波器的研製
★ 應用於內藏式永磁同步馬達之智慧型速度控制及最佳伺服控制頻寬研製★ 新型每安培最大轉矩控制同步磁阻馬達驅動系統之開發
★ 利用適應性互補式滑動模態控制於同步磁阻馬達之寬速度控制★ 具智慧型太陽光電功率平滑化控制之微電網電能管理系統
★ 高性能同步磁阻馬達驅動系統之 寬速度範圍控制器發展★ 智慧型互補式滑動模態控制系統實現於X-Y-θ三軸線性超音波馬達運動平台
★ 智慧型同動控制之龍門式定位平台及應用★ 利用智慧型滑動模式控制之五軸主動式磁浮軸承控制系統
★ 智慧型控制雙饋式感應風力發電系統之研製★ 無感測器直流變頻壓縮機驅動系統之研製
★ 應用於模組化輕型電動車之類神經網路控制六相永磁同步馬達驅動系統★ 多重地網系統之人身安全驗證與模擬
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本論文研究目的為研製與發展以人工智慧機器學習為基礎之高性能同步磁阻馬達驅動系統,提出利用遞迴式模糊類神經網路之智慧型每安培最大轉矩追蹤控制法。本論文首先介紹磁場導向控制之傳統每安培最大轉矩控制,但因同步磁阻馬達的磁阻轉矩高度非線性且時變,造成傳統每安培最大轉矩於實際應用中實現困難。有鑒於此,在同步磁阻馬達驅動系統中,結合了適應性計算電流速度控制器和遞迴式勒壤得模糊類神經網路於每安培最大轉矩控制,可不需藉由查表法而線上獲得最佳的電流角命令。適應性計算電流速度控制器用於產生定子電流命令,並利用李亞普諾夫穩定性理論推導出適應律,用於線上適應總集不確定項,證明了適應性計算電流速度控制的漸近穩定。
本文還設計與分析出以電流角控制為基礎之適應性步階迴歸速度控制系統,應用於同步磁阻馬達驅動系統中,描述以磁場導向控制的比例-積分控制系統,但因同步磁阻馬達受到磁飽和與無法模型化的影響, 軸與 軸電流命令目前沒有一種良好的方法可以獲得。因此,設計出以電流角控制為基礎之適應性步階迴歸系統於同步磁阻馬達的速度追隨上。本文提出的適應性步階迴歸速度控制用於產生定子電流命令,並利用李亞普諾夫穩定性理論推導出適應律,用於線上適應總集不確定項,保證適應性步階迴歸速度追隨控制漸進穩定。使用有限元素分析法分析每安培最大轉矩控制,獲得電流最小化的電流角命令,並將結果藉由查表法做應用。為了改善同步磁阻馬達於每安培最大轉矩下的暫態響應,使用遞迴式赫米特模糊類神經網路作為智慧型速度暫態控制系統產生補償電流角命令。
最後本研究以32位元浮點運算數位訊號處理器TMS320F28075分別將適應性計算電流速度控制器結合遞迴式勒壤得模糊類神經網路,及以智慧型電流角控制為基礎的適應性步階迴歸控制,實現於功率4kW的同步磁阻馬達驅動系統,通過實驗結果驗證了所提出之理論的強健性。
摘要(英) In order to construct an artificial intelligence mechine learning based high-performance synchronous reluctance motor (SynRM) drive system, an intelligent maximum torque per ampere (MTPA) tracking control using a recurrent fuzzy neural network (RFNN) is proposed in this study. First, a traditional MTPA (TMTPA) control system based on field-oriented control (FOC) is introduced. Since the reluctance torque of the SynRM is highly nonlinear and time-varying, the MTPA tracking control is very difficult to achieve by using the TMTPA control in practical applications. Then, an adaptive computed current (ACC) speed control using the proposed recurrent legendre fuzzy neural network (RLFNN) for the MTPA tracking control of a SynRM drive system, which does not use a lookup table (LUT) and can effectively obtain the optimal current angle command of MTPA online, is described in detail. The ACC speed control is applied to generate the stator current magnitude command, and an adaptation law is proposed to online adapt the value of a lumped uncertainty in the ACC control. Moreover, the adaptation law is derived using the Lyapunov stability theorem to guarantee the asymptotic stability of the ACC speed control. Furthermore, the proposed RLFNN is employed to produce the incremental command of the current angle.
The design and analysis of a novel current angle-based adaptive backstepping (ABS) speed control system for a SynRM drive system is also presented in this study. First, a proportional-integral (PI) control system with FOC is described. Owing to the unmodeled dynamics and magnetic saturation effects of the SynRM, currently there is no predominant way to design the command of -axis and -axis currents for the SynRM. Therefore, an ABS based on current angle control (ABS-CAC) system is designed for the speed tracking of SynRM. The ABS speed tracking control is proposed to generate the stator current command, and an adaptive law is derived by Lyapunov stability theorem to online adapt the value of a lumped uncertainty and ensure the asymptotic stability of the ABS speed tracking control. Furthermore, a LUT of the results of MTPA analysis by using the finite element analysis (FEA) method is proposed to provide the current angle command for current minimizing solutions. In addition, to improve the transient dynamic response of SynRM under MTPA operating conditions, an intelligent speed transient control (ISTC) system using a recurrent Hermite fuzzy neural network (RHFNN) is developed to generate the compensated current angle command.
Finally, the ACC speed control with RLFNN and ABS-CAC are implemented in a TMS320F28075 32-bit floating-point digital signal processor (DSP) for a 4 kW SynRM drive system. The robustness and effectiveness of the proposed intelligent MTPA tracking control are verified by some experimental results.
關鍵字(中) ★ 人工智慧機器學習
★ 適應性計算電流速度控制
★ 遞迴式勒壤得模糊類神經網路
★ 適應性步階迴歸控制
★ 遞迴式赫米特模糊類神經網路
★ 電流角控制
★ 有限元素分析
★ 每安培最大轉矩
★ 同步磁阻馬達
關鍵字(英) ★ artificial intelligence mechine learning
★ adaptive computed current speed control
★ recurrent Legendre fuzzy neural network
★ adaptive backstepping control
★ recurrent Hermite fuzzy neural network
★ current angle control
★ finite element analysis
★ maximum torque per ampere
★ synchronous reluctance motor
論文目次 摘要 I
Abstract III
目錄 VI
圖目錄 X
表目錄 XVI
第一章 緒論 1
1.1 研究動機與目的 1
1.2 文獻回顧 6
1.3 論文貢獻 10
1.4 論文大綱 11
第二章 同步磁阻馬達驅動系統之控制板介紹 13
2.1 前言 13
2.2 TMS320F28075數位訊號處理器簡介 15
2.3 以DSP為基礎的同步磁阻馬達控制驅動系統 17
2.3.1 TMS320F28075 DSP控制板 18
2.3.2 輸入/輸出板 19
2.4 TMS320F28075數位訊號處理器控制板之電路 20
2.4.1 電壓源轉換電路 20
2.4.2 數位/類比轉換電壓準位轉換電路 20
2.5 輸入/輸出板之電路 21
2.5.1 ADC輸入腳位之過電流保護電路 21
2.5.2 過電流保護電路 22
2.5.3 數位/類比轉換電路 24
2.6 外部負載控制電路 25
第三章 同步磁阻馬達驅動系統 27
3.1 前言 27
3.2 同步磁阻馬達 29
3.3 同步磁阻馬達數學動態模型 30
3.4 座標轉換之電壓及磁阻轉矩方程式 32
3.5 同步磁阻馬達控制架構 36
3.5.1 傳統每安培最大轉矩控制 36
3.5.2 智慧型每安培最大轉矩追蹤控制 40
3.5.3 傳統PI速度控制器 42
3.5.4 以智慧型電流角控制為基礎之適應性步階回歸控制 44
第四章 適應性計算電流速度控制 46
4.1 前言 46
4.2 適應性計算電流速度控制系統 47
4.2.1 適應性計算電流速度控制 47
4.2.2 適應性計算電流速度控制穩定性證明 49
第五章 同步磁阻馬達智慧型每安培最大轉矩控制 50
5.1 前言 50
5.2 每安培最大轉矩追蹤原理 51
5.3 遞迴式勒壤得模糊類神經網路之架構 56
5.4 遞迴式勒壤得模糊類神經網路之線上學習法則 59
5.5 遞迴式勒壤得模糊類神經網路之收斂性分析 62
第六章 智慧型每安培最大轉矩追蹤控制實驗結果與討論 64
6.1 前言 64
6.2 實驗結果 66
6.3 實驗結果之討論 86
第七章 同步磁阻馬達之有限元素分析 93
7.1 前言 93
7.2 建立同步磁阻馬達之模型 94
7.2.1 同步磁阻馬達模擬之模型建立 95
7.2.2 ANSYS設定 98
7.2.2.1 建立旋轉部分 98
7.2.2.2 繞組與激磁電源 100
7.2.2.3 網格設定 101
7.2.2.4 自訂義輸出參數 102
7.2.2.5 材料參數設定 103
7.2.2.6 應用工具 104
7.3 有限元素分析同步磁阻馬達之每安培最大轉矩驗證與探討 105
7.3.1 輸入電流 107
7.3.2 輸出轉矩 109
7.3.3 馬達磁通 111
7.3.4 馬達電感 112
7.3.5 馬達磁飽和現象 114
7.3.6 同步磁阻馬達與內藏式永磁同步馬達之電感探討 118
7.3.6.1 同步磁場座標軸下的電感大小鑑別 118
7.3.6.2 馬達旋轉一圈之電感變化 120
7.3.6.3 電感對電流之變化 122
7.3.6.4 電感對電流角之變化 124
第八章 適應性步階回歸速度控制與每安培最大轉矩查表法 126
8.1 前言 126
8.2 適應性步階回歸速度追隨控制系統 127
8.2.1 適應性步階回歸速度追隨控制 127
8.2.2 適應性步階回歸速度追隨控制穩定性證明 129
8.3 每安培最大轉矩查表法 130
第九章 遞迴式赫米特模糊類神經網路之智慧型速度暫態控制 134
9.1 前言 134
9.2 遞迴式赫米特模糊類神經網路 134
9.3 遞迴式赫米特模糊類神經網路之線上學習法則 140
9.4 遞迴式赫米特模糊類神經網路之收斂性分析 143
第十章 智慧型電流角控制之適應性步階回歸控制實驗結果與討論 145
10.1 前言 145
10.2 實驗結果 147
10.3 實驗結果之討論 165
第十一章 結論與未來展望 167
11.1 結論 167
11.2 未來展望 168
參考文獻 169
作者簡歷 179
參考文獻 [1] 廖偉辰,「工業馬達驅動系統節電分析」,核研所─能源簡析,2017年4月。
[2] 陳婉箐,「加速馬達產業升級,跨入高效新世代」,工業技術與資訊月刊,304期,2017年02月號。
[3] 經濟部能源局,「急起直追,2016年與全球先進國家同步」,能源報導-封面故事三,2014年10月號。
[4] A. T. D. Almeida, F. J. T. E. Ferreira and A. Q. Duarte, “Technical and Economical Considerations on Super High-Efficiency Three-Phase Motors,” IEEE Trans. Ind. Appl., vol. 50, no. 2, pp. 1274-1285, Apr. 2014.
[5] 吳長恩,“具寬速度控制範圍之同步磁阻馬達驅動器研製”,碩士論文,國立台北科技大學電機工程系,民國一百零五年。
[6] 黃雅琪,「永磁與磁阻馬達市場發展機會與挑戰」,機械工業雜誌,415期,2017年10月號。
[7] A. T. D. Almeida, “Electric Motors and Variable Speed Drives Efficiency – Adjusting MEPS to Technology Developments,” Motor Summit Zurich, 11/12 Oct. 2016.
[8] S. Taghavi and P. Pillay, “A sizing methodology of the synchronous reluctance motor for traction applications,” IEEE J. Emerg. Sel. Topics Power Electron., vol. 2, no. 2, pp. 329–340, Jun. 2014.
[9] “ABB SynRM motor & drive package – Super premium efficiency for HVAC application,” 8th edition of the european hpc infrastructure workshop, Mar. 2017
[10] T. Senjyu, T. Shingaki, and K. Uezato, “Sensorless vector control of synchronous reluctance motors with disturbance torque observer,” IEEE Trans. Ind. Electron., vol. 48, no. 2, pp. 402–407, Apr. 2001.
[11] G. Pellegrino, F. Cupertino, and C. Gerada, “Automatic design of synchronous reluctance motors focusing on barrier shape optimization,” IEEE Trans. Ind. Appl., vol. 51, no. 2, pp. 1465–1474, Mar./Apr. 2015.
[12] A. Vagati, M. Pastorelli, G. Franceschini, and S. C. Petrache, “Design of low-torque-ripple synchronous reluctance motors,” IEEE Trans. Ind. Appl., vol. 34, no. 4, pp. 758–765, Jul./Aug. 1998.
[13] F. J. W. Barnard, W. T. Villet, and M. J. Kamper, “Hybrid active-flux and arbitrary injection position sensorless control of reluctance synchronous machines,” IEEE Trans. Ind. Appl., vol. 51, no. 5, pp. 3899–3906, Sept./Oct. 2015.
[14] W. T. Villet and M. J. Kamper, “Variable-gear EV reluctance synchronous motor drives–an evaluation of rotor structures for position-sensorless control,” IEEE Trans. Ind. Electron., vol. 61, no. 10, pp. 5732–5740, Oct. 2014.
[15] M. Ferrari, N. Bianchi, A. Doria, and E. Fornasiero, “Design of synchronous reluctance motor for hybrid electric vehicles,” IEEE Trans. Ind. Appl., vol. 51, no. 4, pp. 3030–3040, Jul./Aug. 2015.
[16] I. H. Lin, M. F. Hsieh, H. F. Kuo, and M. C. Tsai, “Improved accuracy for performance evaluation of synchronous reluctance motor,” IEEE Trans. Magn., vol. 51, no. 11, Nov. 2015.
[17] N. Bianchi, M. Degano, and E. Fornasiero, “Sensitivity analysis of torque ripple reduction of synchronous reluctance and interior PM motors,” IEEE Trans. Ind. Appl., vol. 51, no. 1, pp. 187–195, Jan./Feb. 2015.
[18] C. T. Liu, B. Y. Chang, K. Y. Hung, and S. Y. Lin, “Cutting and punching impacts on laminated electromagnetic steels to the designs and operations of synchronous reluctance motors,” IEEE Trans. Ind. Appl., vol. 51, no. 4, pp. 3515–3520, Jul./Aug. 2015.
[19] F. N. Isaac, A. A. Arkadan and A. El-Antably, “Characterization of axially laminated anisotropic-rotor synchronous reluctance motors,” IEEE Trans. Energy Convers., vol. 14, no. 3, pp. 506-611, Sep 1999.
[20] J. Kolehainen, “Synchronous reluctance motor with form blocked rotor,” IEEE Trans. Energy Convers., vol. 25, no. 2, pp. 450-456, Jun. 2010.
[21] S. Cai, Jianxin. Shen, H. Hao, and M. Jin, “Design Methods of Transversally Laminated Synchronous Reluctance Mechines,” CES Trans. Electrical Machines and Systems, vol. 1, no. 2, pp. 164-173, 2017.
[22] E. Daryabeigi, H. A. Zarchi, G. R. A. Markadeh, J. Soltani, and F. Blaabjerg, “Online MTPA control approach for synchronous reluctance motor drives based on emotional controller,” IEEE Trans. Power Electron., vol. 30, no. 4, pp. 2157–2166, Apr. 2015.
[23] S. Bolognani, L. Peretti, and M. Zigliotto, “Online MTPA control strategy for DTC synchronous-reluctance-motor drives,” IEEE Trans. Power Electron., vol. 26, no. 1, pp. 20–28, Jan. 2011.
[24] H. Pairo and A. Shoulaie, “Operating region and maximum attainable speed of energy-efficient control methods of interior permanent-magnet synchronous motors,” IET Power Electron., vol. 10, no. 5, pp. 555–567, Apr. 2017.
[25] A. Yousefi-Talouki, P. Pescetto, G. Pellegrino, and I. Boldea, “Combined active flux and high-frequency injection methods for sensorless direct-flux vector control of synchronous reluctance machines,” IEEE Trans. Power Electron., vol. 33, no. 3, pp. 2447–2457, Mar. 2018.
[26] Y. Inoue, S. Morimoto, and M. Sanada, “A novel control scheme for maximum power operation of synchronous reluctance motors including maximum torque per flux control,” IEEE Trans. Ind. Appl., vol. 47, no. 1, pp. 115–121, Jan./Feb. 2011.
[27] S. Jung, J. Hong, and K. Nam, “Current minimizing torque control of the IPMSM using Ferrari’s method,” IEEE Trans. Power Electron., vol. 28, no. 12, pp. 5603–5617, Dec. 2013.
[28] T. H. Liu, Y. Chen, M. J. Wu, and B. C. Dai, “Adaptive controller for an MTPA IPMSM drive system without using a high-frequency sinusoidal generator,” IET J. Eng., vol. 2017, no. 2, pp. 13–25, 2017.
[29] T. Sun, J. Wang, and X. Chen, “Maximum torque per ampere (MTPA) control for interior permanent magnet synchronous machine drives based on virtual signal injection,” IEEE Trans. Power Electron., vol. 30, no. 9, pp. 5036–5045, Sep. 2015.
[30] A. Balamurali, G. Feng, C. Lai, J. Tjong, and N. C. Kar, “Maximum efficiency control of PMSM drives considering system losses using gradient descent algorithm based on DC power measurement,” IEEE Trans. on Energy Conver., vol. 33, no. 4, pp. 2240–2249, Dec. 2018.
[31] H. W. de Kock and M. J. Kamper, “Dynamic control of the permanent magnet-assisted reluctance synchronous machine,” IET Elect. Power Appl., vol. 1, no. 2, pp. 153–160, Mar. 2007.
[32] T. Sun, J. Wang, M. Koc, and X. Chen, “Self-learning MTPA control of interior permanent-magnet synchronous machine drives based on virtual signal injection,” IEEE Trans. Ind. Appl., vol. 52, no. 4, pp. 3062–3070, Jul./Aug. 2016.
[33] M. P. Kazmierkowski, R. Krishnan, and F. Blaabjerg, Control in Power Electronics-Selected Problems. New York: Academic, 2002.
[34] R. J. Wai and Y. Yang, “Design of backstepping direct power control for three-phase PWM rectifier,” IEEE Trans. Ind. Appl., early access, 2019.
[35] T. H. Liu, H. T. Pu, and C. K. Lin, “Implementation of an adaptive position control system of a permanent-magnet synchronous motor and its application,” IET Elect. Power Appl., vol. 4, no. 2, pp. 121–130, Feb. 2010.
[36] R. J. Wai, J. X. Yao, and J. D. Lee, ‘‘Backstepping fuzzy-neural-network control design for hybrid maglev transportation system,’’ IEEE Trans. Neural Netw. Learn. Syst., vol. 26, no. 2, pp. 302–317, Feb. 2015.
[37] F. J. Lin, S. G. Chen, and C. W. Hsu, “Intelligent backstepping control using recurrent feature selection fuzzy neural network for synchronous reluctance motor position servo drive system,” IEEE Trans. Fuzzy Syst., vol. 27, no. 3, pp. 413–427, Mar. 2019.
[38] C. T. Lin and C. S. G. Lee, Neural Fuzzy Systems. Englewood Cliffs, NJ, USA: Prentice-Hall, 1996.
[39] D. Chakraborty and N. R. Pal, “Integrated feature analysis and fuzzy rule-based system identification in a neuro-fuzzy paradigm,” IEEE Trans. Syst. Man Cybern. B, vol. 31, pp. 391–400, Jun. 2001.
[40] R. J. Wai and R. Muthusamy, “Design of fuzzy-neural-network-inherited backstepping control for robot manipulator including actuator dynamics,” IEEE Trans. Fuzzy Syst., vol. 22, no. 4, pp. 709–722, Aug. 2014.
[41] F. J. Lin, I F. Sun, K. J. Yang, and J. K. Chang, “Recurrent fuzzy neural cerebellar model articulation network fault-tolerant control of six-phase permanent magnet synchronous motor position servo drive,” IEEE Trans. Fuzzy Syst., vol. 24, no. 1, pp. 153–167, Feb. 2016.
[42] S. S. Yang and C. S. Tseng, “An orthogonal neural network for function approximation,” IEEE Trans. Syst., Man, Cybern. B, vol. 26, no. 5, pp. 779–783, Oct. 1996.
[43] J. C. Patra and C. Bornand, “Nonlinear dynamic system identification using Legendre neural network,” Proc. Int. Joint Conf. Neural Netw. (IJCNN), Barcelona, Spain, pp. 1–7, 2010.
[44] D. M. Sahoo and S. Chakraverty, “Functional link neural network learning for response prediction of tall shear buildings with respect to earthquake data,” IEEE Trans. Syst., Man, Cybern., Syst., vol. 48, no. 1, pp. 1–10, Jan. 2018.
[45] C. H. Lin, “Novel adaptive modified recurrent Legendre neural network control for a PMSM servo-driven electric scooter with V-belt continuously variable transmission system dynamics,” Trans. of the Institute of Meas. and Control, vol. 37, no. 10, pp. 1181–1196, 2015.
[46] Y. Y. Lin, J. Y. Chang, and C. T. Lin, “Identification and prediction of dynamic systems using an interactively recurrent self-evolving fuzzy neural network,” IEEE Trans. Neural Netw. Learn. Syst., vol. 24, no. 2, pp. 310–321, Feb. 2013.
[47] C. H. Chen, C. J. Lin, and C. T. Lin, “A functional-link-based neuro-fuzzy network for nonlinear system control,” IEEE Trans. Fuzzy Syst., vol. 16, no. 5, pp. 1362–1378, Oct. 2008.
[48] S. Y. Chen and F. J. Lin, “Robust nonsingular terminal sliding-mode control for nonlinear magnetic bearing system,” IEEE Trans. Control Syst. Technol., vol. 19, no. 3, pp. 636–643, May 2011.
[49] A. I. Rasiah, R. Togneri, and Y. Attikiouzel, “Modelling 1 -D signals using Hermite basis functions” IEE Proc.-Vis. Image Signal Process., vol. 144, no. 6, pp. 345–354, Dec. 1997.
[50] L. Ma and K. Khorasani, “Constructive feedforward neural networks using Hermite polynomial activation functions,” IEEE Trans. Neural Netw., vol. 16, no. 4, pp. 821–833, Jul. 2005.
[51] F. J. Lin, M. S. Huang, S. G. Chen, and C. W. Hsu, “Intelligent maximum torque per ampere tracking control of synchronous reluctance motor using recurrent Legendre fuzzy neural network,” IEEE Trans. Power Electron., early access, 2019.
[52] B. J. Choi, S. W. Kwak, and B. K. Kim, “Design and stability analysis of single-input fuzzy logic controller,” IEEE Trans. Syst., Man, Cybern. B, Cybern., vol. 30, no. 2, pp. 303–309, Apr. 2000.
[53] 陳世剛,“利用函數連結放射狀基底函數網路於適應性步階迴歸控制六相永磁同步馬達定位驅動系統”,碩士論文,國立中央大學電機系,民國一百零五年。
[54] 黃泰寅,“新型每安培最大轉矩控制同步磁阻馬達驅動系統之開發”,碩士論文,國立中央大學電機系,民國一百零六年。
[55] TMS320F2807x Piccolo Microcontrollers Datasheet, Texas Instruments.
[56] P. Pillay, R. G. Haarley, and E. J. Odendal, “A comparison between star and delta connected induction motors when supplied by current source inverters,” Electric Power Systems Research., vol. 8, no. 1, pp. 41–51, Oct. 1984.
[57] Z. Haisen, L. Xiaofang, H. Jia, and L. Yingli, “The influence of wye and delta connection on induction motor losses taking slot opening and skew effect into account,” Proc. IEEE International Electric Machines and Drives Conference, May 2009.
[58] M. N, Ibrahim, P. Sergeant, and E. E. M. Rashad, “Combined Star-Delta Windings to Improve Synchronous Reluctance Motor Performance,” IEEE Trans. Energy Convers., vol. 31, no. 4, pp. 1479–1487, Dec. 2016.
[59] R. Rajabi Moghaddam, F. Magnussen, and C. Sadarangani, “Theoretical and experimental reevaluation of synchronous reluctance machine,” IEEE Trans. Ind. Electron., vol. 57, no. 1, pp. 6–13, Jan. 2010.
[60] J. J. E. Slotine and W. Li, Applied Nonlinear Control. Englewood Cliffs, NJ: Prentice-Hall, 1991.
[61] Z. Qu, R. A. Hull, and J. Wang, “Globally Stabilizing Adaptive Control Design for Nonlinearly-Parameterized Systems,” IEEE Trans. Autom. Control., vol. 51, no. 6, pp. 1073–1079, Jun. 2006.
[62] H. A. Zarchi, J. Soltani, and G. A. Markadeh, “Adaptive input-output feedback linearization-based torque control of synchronous reluctance motor without mechanical sensor,” IEEE Trans. Ind. Electron., vol. 57, no. 1, pp. 375–384, Jan. 2010.
[63] Y. A. I. Mohamed and Tsing K. Lee, “Adaptive self-tuning MTPA vector controller for IPMSM drive system,” IEEE Trans. Energy Convers, vol. 21, no. 3, pp. 636–644, Sep. 2006.
[64] 許效豪,“無轉軸偵測元件同步磁阻電動機直接轉矩控制驅動系統之研究”,碩士論文,國立臺灣科技大學電機工程系,民國九十四年。
[65] J. Ahn, S. B. Lim, K. C. Kim, J. Lee, J. H. Choi, S. Kim and J. P. Hong, “Field weakening control of synchronous reluctance motor for electric Power steering,” IET Elec. Power Appl., vol. 1, no. 4, pp. 565-570, Jul. 2007.
[66] S.M.Ferdous, P. Garcia, M. A. M. Oninda, and Md. A. Hoque , “MTPA and Field Weakening Control of Synchronous Reluctance Motor,” Proc. 9th International Conference on Electrical and Computer Engineering, pp. 598-601, Dec. 2016.
[67] C. Mademlis, “Compensation of magnetic saturation in maximum torque to current vector controlled synchronous reluctance motor drives,” IEEE Trans. Energy Convers., vol. 18, no. 3, pp. 379-385, Sep. 2003.
[68] F. J. Lin, K. C. Lu, T. H. Ke, B. H. Yang, and Y. R. Chang, “Reactive power control of three-phase grid-connected PV system during grid faults using Takagi–Sugeno–Kang probabilistic fuzzy neural network control,” IEEE Trans. Ind. Electron., vol. 62, no. 9, pp. 5516–5528, Sep. 2015.
[69] S. Y. Chen and M. H. Song, “Energy-saving dynamic bias current control of active magnetic bearing positioning system using adaptive differential evolution,” IEEE Trans. Syst., Man, Cybern., Syst., vol. 49, no. 5, pp. 942–953, May. 2019.
[70] A. Yousefi-Talouki, P. Pescetto, and G. Pellegrino, “Sensorless direct flux vector control of synchronous reluctance motors including standstill, MTPA, and flux weakening,” IEEE Trans. Ind. Appl., vol. 53, no. 4, pp. 3598–3608, Jul./Aug. 2017.
[71] K. H. Nam, AC Motor Control and Electric Vehicle Applications. Boca Raton, FL, USA: CRC Press, 2010.
[72] C. Lai, G. Feng, K. Mukherjee, J. Tjong, and N. Kar, “Maximum torque per ampere control for IPMSM using gradient descent algorithm based on measured speed harmonics,” IEEE Trans Ind. Informat., vol. 14, no. 4, pp. 1424–1435, Apr. 2018.
[73] G. Zhang, and J. Furusho, “Speed Control of Two-Inertia System by PI/PID Control,” IEEE Trans. Ind. Electron., vol. 47, no. 3, pp. 603-609, 2000.
[74] D. L. Logan, A First Course in the Finite Element Method, MA: Cengage Learning, 2017.
[75] 賴要任,鍾國光,電機電子有限元素法入門,全華圖書,台北市,民國七十七年十一月。
[76] ANSYS, Module 01: Basics Introduction to ANSYS Maxwell, ANSYS,Inc, 2016.
[77] JFE, Electrical Steel Sheets, JFE Steel Corporation, 2015.
[78] A. Kenny, A. Palazzolo, G. T. Montague, and A. F. Kascak, “Theory and Test Correlation for Laminate Stacking Factor Effect on Homopolar Bearing Stiffness.” ASME, Engineering for Gas Turbines and Power, vol. 126, no. 1, pp. 142-146, Jan. 2004.
[79] C. E. Hwang, Y. Lee, and S. K. Sul, “Analysis on Position Estimation Error in Position-Sensorless Operation of IPMSM Using Pulsating Square Wave Signal Injection,” IEEE Trans Ind. Informat., vol. 55, no. 1, pp. 458-470, 2019.
[80] C. Choi, W. Lee, S. O. Kwon, and J. P. Hong, “Experimental Estimation of Inductance for Interior Permanent Magnet Synchronous Machine Considering Temperature Distribution,” IEEE Trans. Magn., vol. 49, no. 6, pp. 2290-2296, 2013.
[81] M. S. Huang, K. C. Chen, C. H. Chen, Z . F. Li, and S. W. Hung, “Torque control in constant power region for IPMSM under six-step voltage operation,” IET Elec. Power Appl., vol. 13, Iss. 2, pp. 181-189, 2019.
[82] P. V. Kokotovic, “The joy of feedback: Nonlinear and adaptive,” IEEE Control. Syst. Mag., vol. 12, pp. 7–17, Jun. 1992.
[83] M. Kristic, I. Kanellakopoulis, and P. V. Kokotovic, Nonlinear and Adaptive Control Design, New York: Wiley, 1995.
[84] C. K. Lin, L. C. Fu, T. H. Liu, and B. H. Chou, “Passivity-based adaptive backstepping PI sliding-mode position control for synchronous reluctance motor drives,” Asian Control Conf. 8th, pp. 245-250, May 2011.
[85] R. J. Wai and H. H. Chang, “Backstepping wavelet neural network control for indirect field-oriented induction motor drive,” IEEE Trans. Neural Netw., vol. 15, no. 2, pp. 367–82, Mar. 2004.
[86] Z. Li, C. Y. Su, G. Li, and H. Su, “Fuzzy approximation-based adaptive backstepping control of an exoskeleton for human upper limbs,” IEEE Trans. Fuzzy Syst., vol. 23, no. 3, pp. 555–566, Jun. 2015.
[87] C. C. Liao, C. H. Chen, Y. F. Peng, and S. C. Wu, “A combined backstepping and wavelet neural network control approach for mechanical system,” Asian Control Conf. (ASCC) 9th, pp. 1–6, Jun. 2013.
[88] D. Mayne, “Nonlinear and Adaptive Control Design-M. Kristic, I. Kanellakopoulis, and P. V. Kokotovic (New York: Wiley, 1995),” IEEE Trans. Autom. Control, vol. 41, no. 12, pp. 1849–1853, Dec.1996. (Book Review).
[89] J. Linares-Flores, C. García-Rodríguez, H. Sira-Ramírez, and O. D. Ramírez-Cárdenas, “Robust backstepping tracking controller for low-speed PMSM positioning system: design, analysis, and implementation, ” IEEE Trans. Ind. Informat., vol. 11, no. 5, pp. 1130–1141, Oct. 2015.
[90] F. J. Lin, M. S. Huang, P. Y. Yeh, H. C. Tsai, and C. H. Kuan, “DSP-based probabilistic fuzzy neural network control for Li-ion battery charger,” IEEE Trans. Power Electron., vol. 27, no. 8, pp. 3782–3794, Aug. 2012.
指導教授 林法正(Faa-Jeng Lin) 審核日期 2019-8-1
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明