參考文獻 |
[1] 彭文陽,「先進馬達與驅動技術專輯」,機械工業雜誌,434期,2019年5月號
[2] P. Pillay, and R. Krishnan, “Application Characteristics of Permanent Magnet Synchronous and Brushless dc Motors for Servo Drives,” IEEE Trans. Ind. Appl., vol. 27, no. 5, pp. 986–996, Sep./Oct. 1991.
[3] H. Kim, J. Son, and J. Lee, “A high-speed sliding-mode observer for the sensorless speed control of a PMSM,” IEEE Trans. Ind. Electron., vol. 58, no. 9, pp. 4069–4077, Sep. 2011.
[4] S. Kim, Y. D. Yoon, S. K. Sul, and K. Ide, “Maximum torque per ampere (MTPA) control of an IPM machine based on signal injection considering inductance saturation,” IEEE Trans. Power Electron., vol. 28, no. 1, pp. 488–497, Jan. 2013.
[5] F. J. Lin, Y. C. Hung, J. M. Chen, and C. M. Yeh, “Sensorless IPMSM drive system using saliency back-EMF-based intelligent torque observer with MTPA control,” IEEE Trans. Ind. Informat., vol. 10, no. 2, pp. 1226–1241, May 2014.
[6] J. Lemmens, P. Vanassche, and J. Driesen, “PMSM drive current and voltage limiting as a constraint optimal control problem,” IEEE J. Emerg. Sel. Topics Power Electron., vol. 3, no. 2, pp. 326–338, Jun. 2014.
[7] T. Sun, J. Wang, and X. Chen, “Maximum torque per ampere (MTPA) control for interior permanent magnet synchronous machine drives based on virtual signal injection,” IEEE Trans. Power Electron., vol. 30, no. 9, pp. 5036–5045, Sep. 2015.
[8] K. Liu, and Z. Zhu, “Fast determination of moment of inertia of permanent magnet synchronous machine drives for design of speed loop regulator, ” IEEE Trans. Control Syst. Technol., vol. 25, no. 5, pp. 1816–1824 Sep. 2017.
[9] C. J. Hsu, and Y. S. Lai, “Novel on-line optimal bandwidth search and auto tuning techniques for servo motor drives,” Proc. IEEE Energy Conversion Congress and Expo. (ECCE), pp. 1-8, 2016.
[10] F. Andoh, “Moment of inertia identification using the time average of the product of torque reference input and motor position,” IEEE Trans. Power Electron., vol. 22, no. 6, pp. 2534–2542, Nov. 2007.
[11] S. Li, and Z. Liu, “Adaptive speed control for permanent-magnet synchronous motor system with variations of load inertia, ” IEEE Trans. Ind. Electron., vol. 56, no. 8, pp. 3050–3059, Aug. 2009.
[12] J. W. Choi, S. C. Lee, H. G. Kim, “Inertia identification algorithm for high-performance speed control of electric motors”, IEE Proc. Electric Power Appl., vol. 153, no. 3, pp. 379–386, May 2006.
[13] L. Niu, D. Xu, M. Yang, X. Gui, and Z. Liu, “On-line inertia identification algorithm for PI parameters optimization in speed loop,” IEEE Trans. Power Electron., vol. 30, no. 2, pp. 849–859, Feb. 2015.
[14] K. Liu and Z. Zhu, “Mechanical parameter estimation of permanent magnet synchronous machines with aiding from estimation of rotor pm flux linkage,” IEEE Trans. Ind. Appl., vol. 51, no. 4, pp. 3115–3125, Jul./Aug. 2015.
[15] W. Yu, and X. Li, “Fuzzy identification using fuzzy neural networks with stable learning algorithms,” IEEE Trans. Fuzzy Syst., vol. 12, no. 3, pp. 411–420, Jun. 2004.
[16] F. J. Lin, H. J. Shieh, P. K. Huang, and L. T. Teng, “Adaptive control with hysteresis estimation and compensation using RFNN for piezo-actuator,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 53, no. 9, pp. 1649–1661, Sep. 2006.
[17] F. J. Lin, P. H. Chou, C. S. Chen, and Y. S. Lin, “DSP-based cross-coupled synchronous control for dual linear motors via intelligent complementary slidingmode control,” IEEE Trans. Ind. Electron., vol. 59, no. 2, pp. 1061–1073, Feb. 2012.
[18] H. Chaoui, and P. Sicard, “Adaptive fuzzy logic control of permanent magnet synchronous machines with nonlinear friction,” IEEE Trans. Ind. Electron., vol. 59, no. 2, pp. 1123–1133, Feb. 2012.
[19] M. A. Khanesar, E. Kayacan, M. Teshnehlab, and O. Kaynak, “Extended Kalman filter based learning algorithm for type-2 fuzzy logic systems and its experimental evaluation,” IEEE Trans. Ind. Electron., vol. 59, no. 11, pp. 4443–4455, Nov. 2012.
[20] S. J. Hart, R. E. Shaffer, S. L. Rose-Pehrsson, and J. R. McDonald, “Using physics-based modeler outputs to train probabilistic neural networks for unexploded ordnance (UXO) classification in magnetometry surveys,”IEEE Trans. Geosci. Remote Sensing, vol. 39, pp. 797–804, Jun. 2001.
[21] X. Jin, D. Srinivasan, and R. L. Cheu, “Classification of freeway traffic patterns for incident detection using constructive probabilistic neural networks,” IEEE Trans. Neural Networks, vol. 12, no. 5, pp. 1173-1187,
September 2001.
[22] F. J. Lin, K. C. Lu, T. H. Ke, and H. Y. Li, “Reactive power control of three-phase PV system during grids faults using Takagi-Sugeno-Kang probabilistic fuzzy neural network control,” IEEE Trans. Ind. Electron., vol. 62, no. 9, pp. 5561–5528, Sep. 2015.
[23] R. J. Wai and R. Muthusamy, “Design of fuzzy-neural-network inherited backstepping control for robot manipulator including actuator dynamics,” IEEE Trans. Fuzzy Syst., vol. 22, no. 4, pp. 709–722, Aug. 2014.
[24] F. J. Lin, M. S. Huang, P. Y. Yeh, H. C. Tsai, and C. H. Kuan, “DSP-based probabilistic fuzzy neural network control for li-ion battery charger,” IEEE Trans. Power Electron., vol. 27, no. 8, pp. 3782–3794, Aug. 2012.
[25] K. H. Tan, “Squirrel-cage induction generator system using wavelet Petri fuzzy neural network control for wind power applications,” IEEE Trans. Power Electron., vol. 31, no. 7, pp. 5242-5254, Jul. 2016.
[26] K. Kaur, R. Rana, N. Kumar, M. Singh, and S. Mishra, “A colored petri net based frequency support scheme using fleet of electric vehicles in smart grid environment,” IEEE Trans. Power Syst., vol. 31, no. 6, pp. 4638–4649, Nov. 2016.
[27] P. Wang, L. Ma, R. M. P. Goverde, and Q. Wang, “Rescheduling trains using Petri nets and heuristic search,” IEEE Trans. Intell. Transp. Syst., vol. 17, no. 3, pp.726–735, Mar. 2016.
[28] Y. C. Hung, F. J. Lin, J. C. Hwang, J. K. Chang, and K. C. Ruan, “Wavelet fuzzy neural network with asymmetric membership function controller for electric power steering system via improved differential evolution,” IEEE Trans. Power Electron., vol. 30, no. 4, pp. 2350-2362, Apr. 2015.
[29] T. Sreekumar and K. S. Jiji, “Comparison of Proportional-Integral (P-I) and Integral-Proportional (I-P) controllers for speed control in vector controlled induction Motor drive,” 2012 2nd International Conference on Power, Control and Embedded Systems, Allahabad, 2012, pp. 1-6.
[30] S. M. Yang, and S. C. Wang, “The detection of resonance frequency in motion control systems,” IEEE Trans. Ind. Appl., vol. 50, no. 5, pp. 3423–3427, Sep./Oct. 2014..
[31] S. H. Kia, H. Henao, and G. A. Capolino, “Torsional vibration assessment using induction machine electromagnetic torque estimation,” IEEE Trans. Ind. Electron., vol. 57, no. 1, pp. 209–219, Jan. 2010.
[32] A. R. Mohanty, and C. Kar, “Fault detection in a multistage gearbox by demodulation of motor current waveform,” IEEE Trans. Ind. Electron., vol. 53, no. 4, pp. 1285–1297, Aug. 2006.
[33] Y. Wang, Q. Zheng, and H. Zhang, “Adaptive control and predictive control for torsional vibration suppression in helicopter/engine system,” IEEE Access, vol. 6, pp. 23896–23906, Apr. 2018.
[34] C. I. Chen, Y. C. Chen, “Intelligent identification of voltage variation events based on IEEE Std 1159-2009 for SCADA of distributed energy System,” IEEE Trans. Ind. Electron., vol. 62, no. 4, pp. 2604-2611, Apr. 2015.
[35] C.I. Chen, “Virtual multifunction power quality analyzer based on adaptive linear neural network,” IEEE Trans. Ind. Electron., vol. 59, no. 8, pp. 3321-3329, Aug. 2012.
[36] Z. Zhao, C. Liu, Y. Li, Y. Li, J. Wang, and B. S. Lin, J. Li, “Noise Rejection for Wearable ECGs Using Modified Frequency Slice Wavelet Transform and Convolutional Neural Networks,” IEEE Access., vol. 7, no. 4, pp. 34060-34067, Feb. 2019.
[37] P. Sangeetha, and S. Hemamalini, “Dyadic wavelet transform-based acoustic signal analysis for torque prediction of a three-phase induction motor,” IET Signal Process., vol. 11, no. 5, pp. 604-612, Jul. 2017.
[38] S. Mallat, “A Theory for Multiresolution Signal Decomposition: The Wavelet Representation,” IEEE Trans. Pattern Analysis and Machine Intelligence, Vol. 11, No. 7, Jul. 1989, pp. 674-693.
[39] M.T. Hanna, and S.A. Mansoori, “The discrete time wavelet transform: its discrete time fourier transform and filter bank implementation,” IEEE Trans. Circuits Systems II: Analog Digital Signal Process, vol. 2, pp. 180-183, 2001.
[40] J. A. R. Macias, and A. G. Exposito, “Efficient computation of the running discrete Haar transform,” IEEE Trans. Power Del., vol. 21, no. 1, pp. 504-5, 2006
[41] Y. Y. Hong, and C. W. Wang, “Switching detection/classification using discrete wavelet transform and self-organizing mapping network,” IEEE Trans. Power Del., vol. 20, no. 2, pp. 1662-1668, Apr. 2005.
[42] 盛暘科技股份有限公司,數位訊號處理,2007。
[43] Texas Instruments,TMS320F28075 datasheet.
[44] MCP4922 datasheet.
[45] 黃泰寅,「新型每安培最大轉矩控制同步磁阻馬達驅動系統之開發」,中央大學電機工程系,碩士論文,民國106年6月。
[46] 俞韋安,「應用於內藏式永磁同步馬達之智慧型最佳伺服頻寬調整及慣量估測」,中央大學電機工程系,碩士論文,民國107年7月。
[47] 陳家銘,「以單一直流鏈電流感測器結合低轉速轉矩補償之無轉軸位置感測器變頻壓縮機驅動系統開發」,中央大學電機工程系,碩士論文,民國102年6月。
[48] K. Ahsanullah, R. Dutta and M. F. Rahman, “Analysis of Low-Speed IPMMs With Distributed and Fractional Slot Concentrated Windings for Wind Energy Applications,” IEEE Transactions on Magnetics, vol. 53, no. 11, pp. 1-10, Nov. 2017
[49] 陳航生,「內藏式永磁同步馬達之特性分析及其電動機車之應用」,中央大學電機工程系,碩士論文,民國93年5月。
[50] 劉昌煥,「交流電機控制」,東華書局,民國92年。
[51] 高子胤,「以反電動勢為基礎之比例積分微分類神經網路估測器之無感測器變頻壓縮機驅動系統開發」,中央大學電機工程系,碩士論文,民國100年7月。
[52] Z. Chen, M. Tomita, S. Ichikawa, S. Doki, and S. Okuma, “Sensorless control of interior permanent magnet synchronous motor by estimator of an extented electromotive force,” in Proc. IECON 00., 2000, pp. 1814-1819.
[53] F. J. Lin and R. J. Wai, “Hybrid controller using a neural network for a PM synchronous servo-motor drive,” IEE Proc.-Elect. Power Appl., vol. 145, no. 3, pp. 223–230, May 1998.
[54] L. Guo and L. Parsa, “Model reference adaptive control of five-phase IPM motors based on neural network,” IEEE Trans. Ind. Electron., vol. 59, no. 3, pp. 1500–1508, Mar. 2012.
[55] 王政偉,「結合小波轉換與類神經網路辨別電力開關之切換」,中原大學電機工程系,碩士論文,民國92年7月。
[56] S. Mallat, “Multifrequency channel decompositions of images and wavelet models,” IEEE Trans. Acoust. Speech Signal Processing, vol. 37, no. 12, pp. 2091-2110, Dec. 1987.
[57] A. Houari, A. Bouabdallah, A. Djerioui, M. Machmoum, F. Auger, A. Darkawi, J. C. Olivier, and M. F. Benkhoris, “An Effective Compensation Technique for Speed Smoothness at Low-Speed Operation of PMSM Drives,” IEEE Trans. Ind. Appl., vol. 54, no. 1, pp. 647–654, Apr. 2018.
[58] Keysight 35670A, datasheet.
[59] H. Sediki, A. Bechouche, D. O. Abdeslam, and S. Haddad, “ADALINE approach for induction motor mechanical parameters identification,” Mathematics and Computers in Simulation, Elsevier, pp. 86-97, 2013.
[60] N. Leonard, “An investigation of control strategies for friction compensation,” Master’s Thesis, University of Maryland, 1991.
[61] N. V. Nenkov, E. Zdravkova, “Implementation of a Neural Network Using Simulator and Petri Nets,” (IJACSA) International Journal of Advanced Computer Science and Applications., vol. 7, no. 1, pp. 412–417, Sep. 2001.
[62] W. M. Lin, C. H. Lin, Z. C. Sun, “Adaptive multiple fault detection and alarm processing for loop system with probabilistic network,” IEEE Trans. Power Del., vol. 19, no. 1, pp. 64-69, Jan. 2004.
|