博碩士論文 106521110 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:44 、訪客IP:3.147.84.215
姓名 黃禮賢(Li-Hsien Huang)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 互補式金氧半導體Ku頻段寬頻功率放大器與K頻段開關鍵控發射機暨X頻段氮化鎵瓦特級功率放大器之研製
(Implementations on CMOS Ku-band Wideband Power Amplifier, K-band On-Off Keying Transmitter and X-band GaN Watt-level Power Amplifiers)
相關論文
★ 應用於筆記型電腦數位電視單極天線之研製★ 應用於數位機上盒與纜線數據機之電纜多媒體傳輸標準多工濾波器
★ 印刷共面波導饋入式多頻帶與超寬頻天線設計★ 微波存取全球互通頻段前向匯入式功率放大器與高效率Class F類功率放大器暨壓控振盪器電路之研製
★ 應用於矽基功率放大器與混頻器之傳輸線型變壓器研究★ 應用於V-頻段射頻收發機前端電路之低功耗源極注入式混頻器之研製
★ 應用積體電路上方後製程與整合被動元件於互補式金氧半導體製程之系統封裝研究★ 應用fT-倍頻電路架構於毫米波壓控振盪器與注入鎖定除頻器之研製
★ 應用傳輸線型變壓器於X/K–Ka/V頻段全積體整合之寬頻互補式金氧半導體功率放大器研製★ 應用於K / V 頻段低功耗混頻器之研製
★ 應用於K/V頻段之低功耗CMOS低雜訊放大器之研究★ 應用於5-GHz CMOS射頻前端電路之低電壓自偏壓式混頻器與高線性化功率放大器之研製
★ 應用於 K 頻段射頻接收機之寬頻低功耗 CMOS 低雜訊放大器之研製★ 應用磁耦合變壓器於K頻段之低功耗互補式金氧半導體壓控振盪器研製
★ 應用於K頻段之單向化全積體整合功率放大器與應用於V頻段之寬頻功率放大器研製★ 應用於C/X頻段全積體整合之互補式金氧半導體寬頻低功耗降頻器與寬頻功率混頻器之研製
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本篇論文共分為五個章節,論文包含使用 tsmcTM 提供的 0.18-µm CMOS、90-nm CMOS 與 WINTM 提供的 0.25-µm GaN 製程,實現應用於 Ku 頻段之寬頻功率放大器、應用於 K 頻段無線感測網路之開關鍵控發射機以及應用於 X 頻段軍用海事雷達之瓦特級功率放大器。

第二章提出採用磁耦合變壓器於 CMOS 功率放大器之研究,為解決 0.18-µm CMOS 製程在 Ku 至 Ka 頻段中所遇到之瓶頸,如基板損耗過大、轉導能力不佳與電晶體崩潰電壓過低等問題,利用達靈頓對結合疊接架構同時提升電流截止頻率 (fT) 與電晶體轉導能力 (gm),使得低階製程能夠在毫米波頻段下獲得足夠的增益及效率,同時也利用交錯耦合回授電容改善電路的增益及頻寬。量測結果顯示小訊號增益最高為 14 dB,飽和輸出功率為 22.2 dBm,1-dB 增益壓縮點輸出功率為 18.8 dBm,功率附加效率最高可達 15.8%,3-dB 頻寬為 6 GHz (11.3 GHz 至 17.3 GHz),晶片面積為 0.7 (1.46×0.48) mm2。

第三章提出應用於無線感測網路之 K 頻段開關鍵控發射機,晶片採用 90-nm CMOS製程。本章節的發射機架構是由 24 GHz 壓控振盪器產生訊號後,經變壓器將訊號耦合給予緩衝器放大,並且透過後端的調變器送出高資料傳輸率的調變訊號,最後利用小型功率放大器將訊號放大並且推送出去,實現低消耗功率且高資料傳輸率之發射機電路。量測結果顯示其可調頻率範圍從 22.7 GHz 至 25.4 GHz,在位移頻率為 1 MHz 時,最低相位雜訊為 -101.6 dBc/Hz,最大輸出功率為 5.3 dBm,最低消耗功率為 23 mW,當數據速率為 2.4 Gbps,換算之能量效率為 9.6 pJ/bit,晶片面積為 0.36 (0.9×0.4) mm2。

第四章提出應用於軍用海事雷達之 X 頻段瓦特級功率放大器,章節 4-3 電路採用兩級共源級架構,輸出端利用低損耗與超緊湊之四路合併結合器以達到十瓦的輸出功率。量測結果顯示功率增益最高為 20.6 dB,飽和輸出功率為 41.73 dBm (14.9 W),1-dB 增益壓縮點輸出功率為 30.9 dBm,功率附加效率最高可達 37%,功率面積比和功率密度分別為 4.29 W/mm2、4.66 W/mm,晶片面積為 3.49 (2.1×1.66) mm2。章節 4-4 電路採用兩級共源級架構,輸出端利用諧波調諧網路改善線性度、效率與相鄰通道洩漏比,同時也將兩路功率合併以增加輸出功率。結果顯示功率增益最高為 19.8 dB,飽和輸出功率為 38.44 dBm (7 W),1-dB 增益壓縮點輸出功率為 36.9 dBm,功率附加效率最高可達 45.4%,功率面積比和功率密度分別為 2.77 W/mm2、4.36 W/mm,晶片面積為 2.52 (2.63×0.96) mm2。
摘要(英) This thesis consists of five chapters. The thesis developed a Ku-band wideband power amplifier and a K-band on-off keying (OOK) transmitter for wireless sensor network (WSN) applications in tsmcTM 0.18-µm CMOS process and 90-nm CMOS process, respectively. The author also developed two watt-level power amplifiers for X-band military marine radar in WINTM 0.25-µm GaN process.

Chapter 2 presents a Ku-band neutralized Darlington cascode power amplifier by using transformer-coupled matching in 0.18-µm CMOS. To solve the bottleneck of the 0.18-μm CMOS process in millimeter wave, such as lossy substrate, poor capability of transconductance (gm) and low breakdown voltage. Darlington pair with cascode topology was adopted as power cell to enhance the current cut-off frequency (fT), maximum oscillation frequency (fmax) and maximum available gain (MAG) of the transistors for being capable of operating at Ku-band to Ka-band. This design also used the cross-coupled capacitors to improve gain and bandwidth. The measurement results showed that the amplifier achieved a peak gain of 14 dB, a saturated output power (P_sat) and output power of 1-dB gain compression point (OP_1dB) of 22.2 dBm and 18.8 dBm, respectively. The peak power added efficiency (PAE_max) is 15.8%. The 3-dB bandwidth is from 11.3 to 17.3 GHz. The chip area is 0.7 (1.46×0.48) mm2.

Chapter 3 proposes a high energy-efficiency K-band OOK transmitter in 90-nm CMOS process. This chapter improves the drawback that conventional transmitter cannot apply the proper modulation signal at buffer stage. The modified transmitter consists of a wideband voltage control oscillator (VCO), a high isolation and high data rate switch-type modulator and a medium power amplifier. The measurement results showed that the OOK transmitter achieves a frequency tuning range from 22.7 to 25.4 GHz, a minimum phase noise of -101.6 dBc/Hz at 1-MHz offset and a maximum output power of 5.3 dBm. The total power consumption is 23 mW. When the data rate is 2.4 Gbps, the energy efficiency is 9.6 pJ/bit. The chip area is 0.36 (0.9×0.4) mm2.

Chapter 4 proposes two types of watt-level power amplifier that applied to X-band military marine radar. The chapter 4-3 presents a power amplifier using two-stage configuration to achieve a linear gain of above 20 dB. In order to achieve 10 W output power and having excellent power per area ratio (PPAR), an ultra-compact layout of four-way power combining structure has been developed. The measurement results showed that the power amplifier achieves a peak power gain of 20.6 dB, a saturated output power (P_sat) and output power of 1-dB gain compression point (OP_1dB) of 41.73 dBm (14.9 W) and 30.9 dBm, respectively. The peak power added efficiency (PAE_max) is 37%. The PPAR and power density are 4.29 W/mm2 and 4.66 W/mm, respectively. The chip area is 3.49 (2.1×1.66) mm2. The chapter 4-4 presents a high efficient power amplifier using two-stage configuration to achieve a linear gain of 20 dB. A compact harmonic tuning network was adopted to improve the linearity and efficiency. Also satisfy the stringent adjacent channel leakage ratio (ACLR) requirements. The designed power amplifier achieves a peak power gain of 19.8 dB, a saturated output power (P_sat) and output power of 1-dB gain compression point (OP_1dB) of 38.4 dBm (7 W) and 36.9 dBm, respectively. The peak power added efficiency (PAE_max) is 45.4%. The PPAR and power density are 2.77 W/mm2 and 4.36 W/mm, respectively. The chip area is 2.52 (2.63×0.96) mm2.
關鍵字(中) ★ 功率放大器
★ 發射機
★ 瓦特級功率放大器
關鍵字(英) ★ Power Amplifier
★ Transmitter
★ Watt-level Power Amplifier
論文目次 摘要 I
Abstract III
目錄 V
圖目錄 VII
表目錄 XI
第一章 緒論 1
1-1 研究動機 1
1-2 研究成果 2
1-3 章節簡介 3
第二章 應用磁耦合變壓器之達靈頓疊接寬頻功率放大器 4
2-1 研究現況 4
2-2 達靈頓對電晶體分析 8
2-3 磁耦合變壓器簡介 18
2-4 交錯耦合回授電容 23
2-4-1 中和化電路 23
2-5 應用於 Ku 頻段之達靈頓疊接寬頻功率放大器 30
2-5-1 應用於 Ku 頻段之達靈頓疊接寬頻功率放大器設計 30
2-5-2 電路模擬與量測結果 37
2-5-3 結果比較與討論 46
第三章 應用於無線感測網路之開關鍵控發射機 49
3-1 研究現況 49
3-2 系統評估 51
3-3 開關鍵控調變器 55
3-4 應用於 K 頻段之開關鍵控發射機 60
3-4-1 應用於 K 頻段之開關鍵控發射機設計 60
3-4-2 電路模擬與量測結果 70
3-4-1 結果比較與討論 76
第四章 應用於 X 頻段之瓦特級功率放大器 79
4-1 研究現況 79
4-2 諧波調諧網路 81
4-3 應用於 X 頻段之超緊湊瓦特級功率放大器 86
4-3-1 應用於 X 頻段之超緊湊瓦特級功率放大器設計 86
4-3-2 電路模擬與量測結果 92
4-3-3 結果比較與討論 100
4-4 應用於 X 頻段之高效率瓦特級功率放大器 104
4-4-1 應用於 X 頻段之高效率瓦特級功率放大器設計 104
4-4-2 電路模擬結果 110
4-4-3 結果比較與討論 116
第五章 結論 119
5-1 結論 119
5-2 未來方向 120
參考文獻 121
參考文獻 [1] J. Lee and S. Heo, "A 27 GHz, 14 dBm CMOS Power Amplifier Using 0.18 μm Common-Source MOSFETs," IEEE Microwave and Wireless Components Letters, vol. 18, no. 11, pp. 755-757, 2008.
[2] A. Vasylyev, P. Weger, and W. Simburger, "Ultra-broadband 20.5-31 GHz monolithically-integrated CMOS power amplifier," Electronics Letters, vol. 41, no. 23, pp. 1281-1282, 2005.
[3] Y. Jen, J. Tsai, C. Peng, and T. Huang, "A 20 to 24 GHz +16.8 dBm Fully Integrated Power Amplifier Using 0.18 μm CMOS Process," IEEE Microwave and Wireless Components Letters, vol. 19, no. 1, pp. 42-44, 2009.
[4] P. Huang, K. Jing-Lin, Z. Tsai, K. Lin, and H. Wang, "A 22-dBm 24-GHz power amplifier using 0.18-µm CMOS technology," in 2010 IEEE MTT-S International Microwave Symposium, 2010, pp. 248-251.
[5] J. Lee and B. Kim, "A K-Band High-Voltage Four-Way Series-Bias Cascode Power Amplifier in 0.13 μm CMOS," IEEE Microwave and Wireless Components Letters, vol. 20, no. 7, pp. 408-410, 2010.
[6] P. Huang, K. Lin, and H. Wang, "A 4–17 GHz Darlington Cascode Broadband Medium Power Amplifier in 0.18-μm CMOS Technology," IEEE Microwave and Wireless Components Letters, vol. 20, no. 1, pp. 43-45, 2010.
[7] C. Kuo, H. Chiou, and H. Chung, "An 18 to 33 GHz Fully-Integrated Darlington Power Amplifier With Guanella-Type Transmission-Line Transformers in 0.18 μm CMOS Technology," IEEE Microwave and Wireless Components Letters, vol. 23, no. 12, pp. 668-670, 2013.
[8] Y. Hsu, Y. Chen, T. Tsai, and K. Lin, "A K-band CMOS cascode power amplifier using optimal bias selection methodology," in Asia-Pacific Microwave Conference 2011, 2011, pp. 793-796.
[9] K. W. Kobayashi, "Linearized Darlington Cascode Amplifier Employing GaAs PHEMT and GaN HEMT Technologies," IEEE Journal of Solid-State Circuits, vol. 42, no. 10, pp. 2116-2122, 2007.
[10] S. Weng, H. Chang, and C. Chiong, "Design of a 0.5–30 GHz Darlington amplifier for microwave broadband applications," in 2010 IEEE MTT-S International Microwave Symposium, 2010, pp. 137-140.
[11] K. Lin et al., "A 4.2-mW 6-dB Gain 5–65-GHz Gate-Pumped Down-Conversion Mixer Using Darlington Cell for 60-GHz CMOS Receiver," IEEE Transactions on Microwave Theory and Techniques, vol. 61, no. 4, pp. 1516-1522, 2013.
[12] Z. Xu, Q. J. Gu, and M. F. Chang, "A 100–117 GHz W-Band CMOS Power Amplifier With On-Chip Adaptive Biasing," IEEE Microwave and Wireless Components Letters, vol. 21, no. 10, pp. 547-549, 2011.
[13] T. Yao et al., "Algorithmic Design of CMOS LNAs and PAs for 60-GHz Radio," IEEE Journal of Solid-State Circuits, vol. 42, no. 5, pp. 1044-1057, 2007.
[14] I. Aoki, S. D. Kee, D. B. Rutledge, and A. Hajimiri, "Distributed active transformer-a new power-combining and impedance-transformation technique," IEEE Transactions on Microwave Theory and Techniques, vol. 50, no. 1, pp. 316-331, 2002.
[15] P. Haldi, D. Chowdhury, P. Reynaert, G. Liu, and A. M. Niknejad, "A 5.8 GHz 1 V Linear Power Amplifier Using a Novel On-Chip Transformer Power Combiner in Standard 90 nm CMOS," IEEE Journal of Solid-State Circuits, vol. 43, no. 5, pp. 1054-1063, 2008.
[16] K. H. An et al., "Power-Combining Transformer Techniques for Fully-Integrated CMOS Power Amplifiers," IEEE Journal of Solid-State Circuits, vol. 43, no. 5, pp. 1064-1075, 2008.
[17] J. Kim et al., "A Fully-Integrated High-Power Linear CMOS Power Amplifier With a Parallel-Series Combining Transformer," IEEE Journal of Solid-State Circuits, vol. 47, no. 3, pp. 599-614, 2012.
[18] C. Lin and H. Chang, "A Broadband Injection-Locking Class-E Power Amplifier," IEEE Transactions on Microwave Theory and Techniques, vol. 60, no. 10, pp. 3232-3242, 2012.
[19] C. Hsieh and Z. Tsai, "A K-band 16-way combined high power amplifier in 0.18-um CMOS," in 2016 IEEE 5th Global Conference on Consumer Electronics, 2016, pp. 1-2.
[20] Y. H. Chee, A. M. Niknejad, and J. M. Rabaey, "An Ultra-Low-Power Injection Locked Transmitter for Wireless Sensor Networks," IEEE Journal of Solid-State Circuits, vol. 41, no. 8, pp. 1740-1748, 2006.
[21] Y. Chee, A. Niknejad, and J. Rabaey, "A 46% Efficient 0.8dBm Transmitter for Wireless Sensor Networks," in 2006 Symposium on VLSI Circuits, 2006. Digest of Technical Papers., 2006, pp. 43-44.
[22] W. Wu, M. A. T. Sanduleanu, X. Li, and J. R. Long, "17 GHz RF Front-Ends for Low-Power Wireless Sensor Networks," IEEE Journal of Solid-State Circuits, vol. 43, no. 9, pp. 1909-1919, 2008.
[23] H. Reinisch et al., "An Electro-Magnetic Energy Harvesting System With 190 nW Idle Mode Power Consumption for a BAW Based Wireless Sensor Node," IEEE Journal of Solid-State Circuits, vol. 46, no. 7, pp. 1728-1741, 2011.
[24] X. Yu, S. P. Sah, H. Rashtian, S. Mirabbasi, P. P. Pande, and D. Heo, "A 1.2-pJ/bit 16-Gb/s 60-GHz OOK Transmitter in 65-nm CMOS for Wireless Network-On-Chip," IEEE Transactions on Microwave Theory and Techniques, vol. 62, no. 10, pp. 2357-2369, 2014.
[25] P. Zhang, F. M. J. Willems, and L. Huang, "Investigations of noncoherent OOK based schemes with soft and hard decisions for WSNs," in 2011 49th Annual Allerton Conference on Communication, Control, and Computing (Allerton), 2011, pp. 1702-1709.
[26] S. Deb et al., "Design of an Energy-Efficient CMOS-Compatible NoC Architecture with Millimeter-Wave Wireless Interconnects," IEEE Transactions on Computers, vol. 62, no. 12, pp. 2382-2396, 2013.
[27] X. Tang, E. Pistono, P. Ferrari, and J. Fournier, "A Traveling-Wave CMOS SPDT Using Slow-Wave Transmission Lines for Millimeter-Wave Application," IEEE Electron Device Letters, vol. 34, no. 9, pp. 1094-1096, 2013.
[28] K. Junghyun, K. Won, K. Sung-Ho, J. Jinho, and K. Youngwoo, "A high-performance 40-85 GHz MMIC SPDT switch using FET-integrated transmission line structure," IEEE Microwave and Wireless Components Letters, vol. 13, no. 12, pp. 505-507, 2003.
[29] K. Lin, T. Wen-Hua, C. Ping-Yu, C. Hong-Yeh, W. Huei, and W. Ruey-Beei, "Millimeter-wave MMIC passive HEMT switches using traveling-wave concept," IEEE Transactions on Microwave Theory and Techniques, vol. 52, no. 8, pp. 1798-1808, 2004.
[30] R. Shu, J. Li, A. Tang, B. J. Drouin, and Q. J. Gu, "Coupling-Inductor-Based Hybrid mm-Wave CMOS SPST Switch," IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 64, no. 4, pp. 367-371, 2017.
[31] K. Chien and H. Chiou, "44 pJ/bit energy-efficiency K-band OOK transmitter for wireless sensor networks," Electronics Letters, vol. 51, no. 15, pp. 1207-1209, 2015.
[32] B. François and P. Reynaert, "Highly Linear Fully Integrated Wideband RF PA for LTE-Advanced in 180-nm SOI," IEEE Transactions on Microwave Theory and Techniques, vol. 63, no. 2, pp. 649-658, 2015.
[33] D. Kang, B. Park, D. Kim, J. Kim, Y. Cho, and B. Kim, "Envelope-Tracking CMOS Power Amplifier Module for LTE Applications," IEEE Transactions on Microwave Theory and Techniques, vol. 61, no. 10, pp. 3763-3773, 2013.
[34] C. W. Byeon, C. H. Yoon, and C. S. Park, "A 67-mW 10.7-Gb/s 60-GHz OOK CMOS Transceiver for Short-Range Wireless Communications," IEEE Transactions on Microwave Theory and Techniques, vol. 61, no. 9, pp. 3391-3401, 2013.
[35] J. Jung, S. Zhu, P. Liu, Y. E. Chen, and D. Heo, "22-pJ/bit Energy-Efficient 2.4-GHz Implantable OOK Transmitter for Wireless Biotelemetry Systems: In Vitro Experiments Using Rat Skin-Mimic," IEEE Transactions on Microwave Theory and Techniques, vol. 58, no. 12, pp. 4102-4111, 2010.
[36] E. Juntunen et al., "A 60-GHz 38-pJ/bit 3.5-Gb/s 90-nm CMOS OOK Digital Radio," IEEE Transactions on Microwave Theory and Techniques, vol. 58, no. 2, pp. 348-355, 2010.
[37] K. Kim, J. Choi, M. Seo, and S. Nam, "500 MHz OOK Transmitter With 22 pj/bit, 38.4% Efficiency Using RF Current Combining," IEEE Microwave and Wireless Components Letters, vol. 24, no. 6, pp. 424-426, 2014.
[38] P. Tuan-Anh, L. Jeongseon, V. Krizhanovskii, H. Seok-Kyun, L. Sang-Gug, and H. Seok-Kyun, "A 18-pJ/Pulse OOK CMOS Transmitter for Multiband UWB Impulse Radio," IEEE Microwave and Wireless Components Letters, vol. 17, no. 9, pp. 688-690, 2007.
[39] C. Ling, H. Yang, J. Chen, and Y. E. Chen, "A 1.9 GHz CMOS High Isolation Absorptive OOK Modulator," IEEE Microwave and Wireless Components Letters, vol. 25, no. 3, pp. 190-192, 2015.
[40] Z. He, T. Swahn, Y. Li, and H. Zirath, "A 14 Gbps On-/Off- Keying Modulator in GaAs HBT Technology," IEEE Microwave and Wireless Components Letters, vol. 22, no. 5, pp. 272-274, 2012.
[41] C. W. Byeon and C. S. Park, "A High-Efficiency 60-GHz CMOS Transmitter for Short-Range Wireless Communications," IEEE Microwave and Wireless Components Letters, vol. 27, no. 8, pp. 751-753, 2017.
[42] F. Zhu et al., "A Low-Power Low-Cost 45-GHz OOK Transceiver System in 90-nm CMOS for Multi-Gb/s Transmission," IEEE Transactions on Microwave Theory and Techniques, vol. 62, no. 9, pp. 2105-2117, 2014.
[43] J. Lee, Y. Chen, and Y. Huang, "A Low-Power Low-Cost Fully-Integrated 60-GHz Transceiver System With OOK Modulation and On-Board Antenna Assembly," IEEE Journal of Solid-State Circuits, vol. 45, no. 2, pp. 264-275, 2010.
[44] T. Senju, K. Takagi, and H. Kimura, "A 2 W 45 % PAE X-Band GaN HEMT Class-F MMIC Power Amplifier," in 2018 Asia-Pacific Microwave Conference (APMC), 2018, pp. 956-958.
[45] R. Giofré, P. Colantonio, and F. Giannini, "A Design Approach for Two Stages GaN MMIC PAs With High Efficiency and Excellent Linearity," IEEE Microwave and Wireless Components Letters, vol. 26, no. 1, pp. 46-48, 2016.
[46] D. Resca, A. Raffo, S. D. Falco, F. Scappaviva, V. Vadalà, and G. Vannini, "X-Band GaN Power Amplifier for Future Generation SAR Systems," IEEE Microwave and Wireless Components Letters, vol. 24, no. 4, pp. 266-268, 2014.
[47] K. Kanaya et al., "A Ku-band 20 W GaN-MMIC amplifier with built-in linearizer," in 2014 IEEE MTT-S International Microwave Symposium (IMS2014), 2014, pp. 1-4.
[48] H. Wu, C. Wang, Q. Lin, Y. Chen, L. Hu, and W. Tong, "A High-Efficiency 15-Watt GaN HEMT X-Band MMIC Power Amplifier," in 2018 International Conference on Microwave and Millimeter Wave Technology (ICMMT), 2018, pp. 1-3.
[49] C. F. Campbell, Y. Liu, M. Kao, and S. Nayak, "High efficiency Ka-band Gallium Nitride power amplifier MMICs," in 2013 IEEE International Conference on Microwaves, Communications, Antennas and Electronic Systems (COMCAS 2013), 2013, pp. 1-5.
[50] J. Chéron, M. Campovecchio, R. Quéré, D. Schwantuschke, R. Quay, and O. Ambacher, "High-gain over 30% PAE power amplifier MMICs in 100 nm GaN technology at Ka-band frequencies," in 2015 10th European Microwave Integrated Circuits Conference (EuMIC), 2015, pp. 262-264.
[51] R. Quaglia, V. Camarchia, J. J. M. Rubio, M. Pirola, and G. Ghione, "A 4-W Doherty Power Amplifier in GaN MMIC Technology for 15-GHz Applications," IEEE Microwave and Wireless Components Letters, vol. 27, no. 4, pp. 365-367, 2017.
[52] M. Coffey, P. MomenRoodaki, A. Zai, and Z. Popovic, "A 4.2-W 10-GHz GaN MMIC Doherty Power Amplifier," in 2015 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS), 2015, pp. 1-4.
[53] D. Gustafsson, J. C. Cahuana, D. Kuylenstierna, I. Angelov, and C. Fager, "A GaN MMIC Modified Doherty PA With Large Bandwidth and Reconfigurable Efficiency," IEEE Transactions on Microwave Theory and Techniques, vol. 62, no. 12, pp. 3006-3016, 2014.
[54] D. Gustafsson, J. C. Cahuana, D. Kuylenstierna, I. Angelov, N. Rorsman, and C. Fager, "A Wideband and Compact GaN MMIC Doherty Amplifier for Microwave Link Applications," IEEE Transactions on Microwave Theory and Techniques, vol. 61, no. 2, pp. 922-930, 2013.
[55] R. Santhakumar et al., "Two-Stage High-Gain High-Power Distributed Amplifier Using Dual-Gate GaN HEMTs," IEEE Transactions on Microwave Theory and Techniques, vol. 59, no. 8, pp. 2059-2063, 2011.
[56] A. Biondi, S. D. Angelo, F. Scappaviva, D. Resca, and V. A. Monaco, "Compact GaN MMIC T/R module front-end for X-band pulsed radar," in 2016 11th European Microwave Integrated Circuits Conference (EuMIC), 2016, pp. 297-300.
[57] K.-T. Bae, I.-J. Lee, B. Kang, S. Sim, L. Jeon, and D.-W. Kim, "X-Band GaN Power Amplifier MMIC with a Third Harmonic-Tuned Circuit," Electronics, vol. 6, no. 4, 2017.
[58] Wolfspeed, MMIC Bare Die, CMPA801B025D Data Sheet. Available online: http://www.wolfspeed.com (accessed on 1 May 2019).
[59] Qorvo, High Frequency Amplifiers, TGA2624 Data Sheet. Available online: http://www.qorvo.com (accessed on 1 May 2019).
[60] 郭晉瑋,「應用傳輸線型變壓器於X/K–Ka/V頻段全積體整合之寬頻互補式金氧半導體功率放大器研製」,國立中央大學,碩士論文,民國102年。
[61] 賴俐妏,「應用於X/Ka頻段之互補式金氧半導體寬頻中性化功率放大器暨應用低阻抗二元功率結合技術與多蒂架構於X頻帶氮化鎵功率放大器之研製」,國立中央大學,碩士論文,民國107年。
指導教授 邱煥凱(Hwann-Kaeo Chiou) 審核日期 2019-8-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明