博碩士論文 105521039 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:31 、訪客IP:18.220.59.69
姓名 楊育銜(Yu-Sian Yang)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 應用於SATA III之 6 GHz 展頻時脈迴路
(A 6 GHz SATA-III Spread Spectrum Clock Generator)
相關論文
★ 一種應用於觸控液晶顯示器的新型嵌入式開關★ 多重相位之延遲鎖定迴路倍頻器設計與分析
★ 2.5Gbps串列收發器設計★ 具低抖動與可適應式頻寬之自我偏壓鎖相迴路設計
★ 應用於串列傳輸之2.5GB/s CMOS 超取樣資料回復電路★ 全數位任意責任週期之同步映射延遲電路
★ 全數位式互補金屬氧化半導自我取樣延遲線電路用於時脈抖動量測★ 500MHz,30個相位輸出之鎖相迴路應用於三倍超取樣時脈回復系統
★ 設計於90奈米製程輸出頻率為100MHz-1GHz之具可適應性頻寬鎖相迴路★ 高解析度可變動責任週期之同步複製延遲電路
★ 奈米CMOS晶片內序列傳輸之接收器★ 奈米CMOS晶片內序列傳輸之送器
★ 基於鎖相迴路之多重相位脈波產生器★ 低能量時脈儲存元件之分析、設計與量測
★ 具有預先增強器之Gbps串列連結傳送器及全數位超取樣資料回復器★ 應用於10Gbps晶片系統傳輸鏈之低抖動自我校準鎖相迴路設計
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2024-7-31以後開放)
摘要(中) 本論文提出了以次取樣鎖相迴路為架構的6 GHz展頻時脈電路設計,符合SATA III之展頻時脈規格,使用三角波向下展頻;架構上,在次取樣鎖相迴路中,由於缺少除頻器而具有較大迴路頻寬,因此擁有較佳的抖動量;在次取樣檢測器中,以壓控振盪器取樣輸入參考訊號,替換原本外接輸入參考訊號,與次取樣檢測器另一組輸入端點,壓控振盪器差動輸出,皆為同源訊號而失鎖往固定方向,利用此狀態來對時脈展頻,並使用適應器偵測三角波波峰與波谷的頻率,適時調整追鎖方向,來實現平滑三角波展頻電路,因此電路同時具有較大迴路頻寬與簡易架構兩大優勢,而具有較小核心面積、功耗和較大的電磁干擾抑制量與較佳的抖動量;另外,為了減少類比濾波器面積大小,本論文使用電流式電容放大技術來大量縮減面積。

本論文電路使用TSMC 40 nm 1P9M (TN40G) CMOS 製程來實現,電路操作電壓為0.9 V,輸入參考訊號頻率為100 MHz,輸出時脈訊號頻率為6 GHz。次取樣鎖相迴路的展頻時脈產生器的部份則是使用三角波調變式的展頻可以得到21 dB的電磁干擾抑制量。電路所占面積為0.13 mm2,晶片所佔面積為1.11 mm2。
摘要(英) A 6 GHz SATA-III spread-spectrum clock generator in sub-sampling loop structure is presented in this thesis. It uses triangular spread wave and down-spread technique. In structure, the loop without divider has wider loop bandwidth compared with phase-locked loop, so it has better jitter performance. In spread-spectrum clock, we replaced external reference signal of sub-sampled phase detector with that signal triggered by voltage-controlled oscillator. The design makes input signals of sub-sampled phase detector, including the signal triggered by voltage-controlled oscillator and differential output of voltage-controlled oscillator, come from voltage-controlled oscillator and lose lock in inherent direction. Therefore, if we carefully adjust the direction and monitor turning points, we can perform smooth triangular wave spread spectrum. The design gets more advantages of chip area, power, EMI reduction and jitter performance because the design has larger loop bandwidth and simple architecture. In addition, we also adopt the current mode capacitor amplification to save more chip area.

The proposed spread-spectrum clock generator circuit is fabricated in TSMC 40nm 1P9M CMOS process at 6 GHz operating frequency. The supply voltage is 0.9 V. The input reference frequency is 100 MHz. The reduction of electromagnetic interference is 21 dB with the spread-spectrum mechanism modulated by triangular wave. The chip area is 1.11 mm2. The core area is 0.13 mm2.
關鍵字(中) ★ 展頻時脈
★ 時脈
★ 次取樣鎖相迴路
★ 鎖相迴路
關鍵字(英) ★ spread spectrum clock generator
★ clock generator
★ sub-sampling phase-locked loop
★ phase-locked loop
論文目次 目錄
摘要 i
Abstract ii
誌謝 iii
目錄 iv
圖目錄 vii
表目錄 x
第1章 緒論 1
1.1 背景簡介 1
1.2 研究動機 3
1.3 論文架構 4
第2章 展頻時脈產生器概論 5
2.1 電磁干擾的影響與解決方式 5
2.1.1 傳統抑制電磁干擾方式 5
2.1.2 展頻時脈理論 7
2.1.3 展頻時脈的展頻範圍 10
2.1.4 展頻時脈的展頻波種類 12
2.2 展頻時脈產生器電路 14
2.2.1 展頻時脈產生器概略分類 14
2.3 除頻器調變技術 15
2.3.1 挹注電流補償技術 16
2.3.2 相位補償技術 18
2.3.3 近期特殊展頻技術 20
2.4 次取樣鎖相迴路操作 22
2.4.1 鎖相迴路與次取樣鎖相迴路系統架構比較 22
2.4.2 次取樣鎖相迴路的限制與補強方式 24
2.5 總結 26
第3章 展頻時脈產生器系統與電路架構設計 27
3.1 簡介 27
3.2 電路架構 28
3.3 系統分析 31
3.3.1 鎖相迴路系統分析 31
3.3.2 次取樣鎖相迴路系統分析 34
3.4 展頻操作說明 37
3.4.1 展頻原理 37
3.4.2 多工器操作與適應機制設計 39
3.4.3 展頻操作面臨的問題 42
3.4.4 系統行為模擬 45
第4章 展頻時脈產生器子電路設計與模擬分析 46
4.1. 鎖相迴路的子電路設計 46
4.1.1. 相位頻率檢測器 47
4.1.2. 利用電流放大技術的迴路濾波器 48
4.1.3. 電荷幫浦 49
4.1.4. 電壓控制振盪器 52
4.1.5. 除頻器 54
4.1.6. 次取樣相位檢測器 55
4.1.7. 在次取樣鎖相迴路的電荷幫浦 56
4.1.8. 脈波產生器 58
4.1.9. 相位內插器 59
4.2. 模擬結果 60
4.2.1. 操作在6 GHz之次取樣鎖相迴路模擬 61
4.2.2. 次取樣鎖相迴路模擬之操作在6 GHz展頻電路模擬 63
第5章 晶片佈局與量測規劃 65
5.1. 電路佈局 65
5.1.1. 晶片封裝 66
5.1.2. 佈局與電源規劃 69
5.2. 高速輸入輸出與電源I/O的特殊考量 70
5.3. 量測考量 71
5.3.1. 量測環境 71
5.3.2. 高頻輸出緩衝器 72
5.3.3. 低頻輸出緩衝器 74
5.4. 規格比較表 75
第6章 結論 77
6.1. 結論 77
6.2. 未來研究方向 78
參考文獻 79
參考文獻 參考文獻
[1] T. Sudo, H. Sasaki, N. Masuda, and J. L. Drewniak, “Electromagnetic interference (EMI) of system-on-package (SOP),” IEEE Trans. on Advanced Packaging, vol. 27, no. 2, pp. 304-314, May 2004
[2] 花怡慧, “66/ 133/ 266 MHz展頻時脈產生器之設計與製作,” 碩士論文, 國立臺灣大學, 2002
[3] A. Shoval, W. Martin, and D. A. Johns, “A 100 Mb/s BiCMOS adaptive pulse-shaping filter,” IEEE J. on Selected Areas in Communication, vol. 13, pp. 1692-1702, Dec. 1995
[4] S. Bolger and S. O. Darwish, “Use spread-spectrum techniques to reduce EMI,” May 1998
[5] 沈鼎璿, “利用除小數頻率合成器製作之展頻時脈產生器,” 碩士論文, 國立臺灣大學, 2007
[6] F. Lin and D. Chen, “Reduction of power supply EMI emission by switching frequency modulation,” in the VPEC Tenth Annual Power Electronics Seminar, Virginia Power Electronics Center, Blacksburg, Virginia, Sep. 20-22, 1992
[7] F. Pareschi, G. Setti, and R. Rovatti, “A 3-GHz Serial ATA spread-spectrum clock generator employing a chaotic PAM modulation,” IEEE Trans. Circuits Syst. I, Reg. Paper, vol. 57, no. 10, pp. 2577-2587, Oct. 2010
[8] K.-H. Cheng, C.-L. Hung, C.-H. Chang, Y.-L. Lo, W.-B. Yang, and J.-W. Miaw, “A spread-spectrum clock generator using fractional-N PLL controlled delta-sigma modulator for Serial-ATA III,” IEEE Design and Diagnostics of Electronic Circuits and Syst. DDECS, pp. 1-4, Apr. 2008
[9] H.-H. Chang, I.-H. Hua, and S.-I. Liu, “A spread-spectrum clock generator with triangular modulation,” IEEE J. Solid-State Circuits, vol. 30, no. 4, Apr. 2003
[10] H.-S. Li, Y.-C Cheng, and D. Puar, “Dual-loop spread-spectrum clock generator,” IEEE Inter. Solid-State Circuit Conf., pp. 184-186, 1999
[11] J. Kim and P. Jun, “Dithered time spread spectrum clock generation for reduction of electromagnetic radiated emission from high-speed digital system,” IEEE Inter. Symp. on Electro-magnetic Compatibility, Aug. 2002
[12] Masaru et al., “Spread-spectrum clock generator for serial ATA using fractional PLL controlled by ΔΣ modulator with level shifter,” IEEE Inter. Solid-State Circuit Conf., vol. 1, 2005
[13] S.E. Meninger and M.H. Perrott, “A fractional-N frequency synthesizer architecture utilizing a mismatch compensated PFD/DAC structure for reduced quantization-induced phase noise,” IEEE Trans. Circuits Syst. II, Express Briefs, vol. 50, no. 11, Nov. 2003
[14] C.-H. Park, O. Kim, and B. Kim, “A 1.8-GHz self-calibrated phase-locked loop with precise I/Q matching,” IEEE J. Solid-State Circuits, vol.36, no. 5, May 2001
[15] S.-I. Liu and C.-Y. Yang, “A phase locking loop,” Tsang Hai, 2006
[16] C.-Y. Yang, J.-W. Chen, and M.-T. Tsai, “A high-frequency phase-compensation fraction-N frequency synthesizer,” IEEE Inter. Symp. Circuits Syst., vol. 5, pp. 5091-5094, May 2005
[17] B. A. Floyd, “Sub-integer frequency synthesis using phase-rotating frequency dividers,” IEEE Tran. Circuits Systems I, Reg. Paper, vol. 55 no. 7 pp.1823-1833, Aug. 2003
[18] Y.-H. Kao, and Y.-B. Hsieh, “A low-power and high-precision spread spectrum clock generator for serial advanced technology attachment applications using two-point modulation,” IEEE Trans. on Electromagnetic Compatibility, vol. 51, no. 2, pp. 245-254, May 2009
[19] C.-H. Wong, and T.-C. Lee, “A 6-GHz self-oscillating spread-spectrum clock generator,” IEEE Trans. Circuits Systems I, Reg. Papers, vol. 60, no. 5, pp. 1264-1273, May 2013
[20] 張誌顯, “應用在SATA-III上6 Gbps 展頻時脈產生器,” 碩士論文, 國立中央大學, 2008
[21] 鄭宇亨, “具資料獨立相位追蹤補償技術之10 Gbps半速率時脈與資料回復電路,” 碩士論文, 國立中央大學, 2018
[22] X. Gao, E. A. M. Klumperink, M. Bohsali, and B. Nauta, “A low noise sub-sampling PLL in which divider noise is eliminated and PD/CP noise is not multiplied by N2,” IEEE J. Solid-State Circuits, vol. 44, no. 12, Dec. 2009
[23] X. Gao, E. A. M. Klumperink, G. Socci, M. Bohsali, and B. Nauta, “Spur reduction techniques for phase-locked loops exploiting a sub-sampling phase detector,” IEEE J. Solid-State Circuits, vol. 45, no. 9, Sep. 2010
[24] Serial ATA international organization (SATA-IO) SATA revision 3.0
[25] 劉深淵, 楊清淵, 鎖相迴路, 滄海書局, 2006
[26] 高曜煌, 射頻鎖相迴路IC設計, 滄海書局, 2005
[27] 張雨翔, “布朗亂數展頻時脈產生器,” 碩士論文, 國立交通大學, 2013
[28] 何威達, “具有極佳的電磁干擾效應衰減效果之全數位展頻時脈產生器,” 碩士論文, 國立中正大學, 2012
[29] S.-G. Bae, G. Kim, and C. Kim, “A 5-GHz subsampling PLL-based spread-spectrum clock generator by calibrating the frequency deviation,” IEEE Trans Circuits Syst. II, Express Briefs, vol. 64, no. 10, Oct. 2017
[30] C.-Y. Lin, T.-J. Wang, and T.-H. Lin, “A 1.5-GHz sub-sampling fractional-N PLL for spread-spectrum clock generator in 0.18-μs CMOS,” IEEE Asian Solid-State Circuits Conf., pp. 253-256, Nov. 2017
[31] S.-G. Bae, S. Hwang, J. Song, Y. Lee, and C. Kim, “A ΔΣ modulator-based spread-spectrum clock generator with digital compensation and calibration for phase-locked loop bandwidth,” IEEE Trans. Circuits Syst. II, Express Briefs, vol. 66, no. 2, Feb. 2019
[32] T. Kawamoto, M. Suzuki, and T. Noto, “1.9-ps jitter, 10.0-dBm-EMI reduction spread-spectrum clock generator with autocalibration VCO technique for Serial-ATA application,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 22, no. 5, pp. 1118-1126, May 2014
[33] K.H. Cheng, C.-L. Hung, and C.-H. Chang, “A 0.77 ps RMS jitter 6-GHz spread-spectrum clock generator using a compensated phase-rotating technique,” IEEE J. Solid-State Circuits, vol. 46, no. 5, pp. 1198-1213, May 2011
指導教授 鄭國興(Kuo-Hsing Cheng) 審核日期 2019-8-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明