博碩士論文 105521099 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:19 、訪客IP:3.147.36.185
姓名 李承叡(Chang-Ray Li)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 矽基製程高速寬頻追蹤保持放大器之線性度與改變率研究
(Research on Linearity And Droop Rate for Silicon Based High Speed Broadband Track-and-Hold Amplifiers)
相關論文
★ 微波及毫米波切換器及四相位壓控振盪器整合除三 除頻器之研製★ 微波低相位雜訊壓控振盪器之研製
★ 高線性度低功率金氧半場效電晶體射頻混波器應用於無線通訊系統★ 砷化鎵高速電子遷移率之電晶體微波/毫米波放大器設計
★ 微波及毫米波行進波切換器之研製★ 寬頻低功耗金氧半場效電晶體 射頻環狀電阻性混頻器
★ 微波與毫米波相位陣列收發積體電路之研製★ 24 GHz汽車防撞雷達收發積體電路之研製
★ 低功耗低相位雜訊差動及四相位單晶微波積體電路壓控振盪器之研究★ 高功率高效率放大器與振盪器研製
★ 微波與毫米波寬頻主動式降頻器★ 微波及毫米波注入式除頻器與振盪器暨射頻前端應用
★ 寬頻主動式半循環器與平衡器研製★ 雙閘極元件模型與微波及毫米波分佈式寬頻放大器之研製
★ 銻化物異質接面場效電晶體之研製及其微波切換器應用★ 微波毫米波寬頻振盪器與鎖相迴路之研製
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文主要探討應用於高速資料轉換系統微波及毫米波頻段高線性度追蹤與保持放大器,並著重於改變率及線性度改良的研究,所提出的設計、研究以及理論計算分析結果將以實際晶片量測結果來做驗證。高速追蹤保持放大器的詳細介紹包含操作原理、重要參數介紹、設計考量、降頻率取樣應用與將在第二章呈現。
第三章是使用40 nm CMOS製作的追蹤保持放大器(THA)。設計上採用差動架構的傳統開關電容式(SC)追蹤鎖定(T / H)級,搭配保持模態下的差動饋通消除技術。加入了減輕時脈饋通信號的雜散電晶體,分析其最佳尺寸和電荷注入的電壓誤差分析。時脈緩衝器部分則是使用分佈式放大器,具有寬頻及良好的阻抗匹配特性,輸入高功率弦波使得時脈輸入轉為方波。輸出入緩衝級使用共源級放大器加入主動式電感做頻寬拉升技術,增強追蹤模態頻寬,且不佔用多餘的電路面積。模擬結果顯示,追蹤模式下頻寬為DC~42 GHz,最大無失真動態範圍(SFDR)為46 dBc,平均增益約為 0 dB,直流功耗為217.2 mW,晶片尺寸為0.83× 0.94 mm2。。
第四章介紹為DC至34 GHz追蹤保持放大器,採用0.18μm SiGe製程製造。針對數種特性增強技術,包括操作速度提升、線性度提高和解析度增強,將傳統的開關射極隨耦式(SEF)進行分析改良。在開關級加入疊接電晶體,減輕以往面臨的時脈饋通電壓誤差,採用了差動消除技術進一步提高解析度,並分析改良後SEF最佳電晶體尺寸。輸入緩衝級使用源極隨耦器,具有高寬頻的特性,且輸出端可提供合適的電位至SEF開關。輸出緩衝器使用共源級放大器搭配主動式電感執行頻寬拉升技術,進一步增強追蹤模態頻寬。所提出的THA具有34 GHz的追蹤模態頻寬,最大無失真動態範圍(SFDR)為44 dBc,直流功耗為120 mW平均增益約為 0 dB,直流功耗為120 mW,晶片尺寸為1.14× 0.71 mm2。
第五章為使用TSMC 0.18 μm SiGe製程所實現DC ~ 40 GHz 主從式追蹤保持放大器,此章節以改良改變率為目標,而做了架構上的修改,將第二章節的追蹤保持(T / H)級為核心後設計主從式追蹤保持放大器。此次設計輸入緩衝器的架構,基本架構為達林頓對,針對THA對高頻寬的特性需求,利用疊接電晶體將達林頓對與輸出端隔離以釋放低通響應,且降低輸出寄生電容。輸出緩衝級參考第四章所使用的源極隨耦器,可以同時兼任前級與後級負載,符合設計上的需求。量測方面,此追蹤保持放大器架構具有40 GHz 的 3-dB輸入頻寬、43.2 dBc無失真動態範圍、平均增益約為 -5 dB,直流功耗為119.4 mW,改變率為4 μV/ps,晶片尺寸為2.135× 0.865 mm2。
最後,總結了本論文所提出電路設計架構,並且提出未來設計方向以達到更高速、更寬頻、更好的電路線性度。
摘要(英) This thesis mainly discusses the application of high-linearity track and hold amplifiers for high-speed data conversion systems in microwave and millimeter-wave bands, and focuses on the improvement of rate-of-change and linearity. The proposed design, research and theoretical calculations will be verified with on wafer measurement results. The introduction and design considerations of THA includes the operating principle, important parameter descriptions, design considerations, and frequency-down sampling applications will be presented in Chapter 2.
The proposed THA with clock buffer is frabricated using TSMC 40 nm CMOS general purpose process in Chapter 3. Compared to the traditional switched-capacitor (SC) track and hold(T / H)stage. A differential cancellation technique is proposed for the track-and-hold stage to reduce the feedthrough during the hold mode. To avoid charge injection, the dummy transistors are adopted in the track-and-hold stage. The clock buffer uses a distributed amplifier with wide bandwidth and good impedance matching, makes the high power input sine wave turn out as a square wave. The input and output buffer use common-source amplifier with active inductor peaking technology to enhance the track-mode bandwidth without taking up extra circuit area. The simulation results show that the measured 3-dB bandwidth of the THA is 42 GHz with small-signal gain of 0 dB. The best SFDR is 46 dBc. The total DC power consumption is 217.2 mW. The chip size is 0.83×0.94 mm2.
The proposed THA is frabricated using TSMC 0.18 μm SiGe general purpose process in Chapter 4. Several performance enhancement techniques are investigated including operated speed extension, linearity improvement, and resolution enhancement. Compared to the traditional switch emitter-follower (SEF), a cascode transistor is added to the switch stage to reduce the clock feedthrough voltage error. The differential cancellation technique is used to further improve the resolution and analyze the improved SEF optimal transistor size. Moreover, the common source with active inductor peaking topology is employed to enhance the gain and bandwidth of the THA. The proposed THA has a 3-dB bandwidths of the THA is 34 GHz with small-signal gain of -4.8 dB. The best SFDR is 44 dBc. The total DC power consumption is 120 mW. The chip size is 1.14 ×0.71 mm2.
The proposed Master slave THA is frabricated using TSMC 0.18 μm SiGe general purpose process in Chapter 5. To improve the droop rate of the switch stage in Chpater 2, the THA is resimulated and combined as a master slave topology. In order to enhance the operated speed, the modified Darlington-based input buffer is used to release low pass response. The output buffer is designed by using the source follower topology which features low leakage current and broadband output matching. The measured 3-dB bandwidths of the THA is 40 GHz with small-signal gain of -5 dB. The best SFDR is 43.2 dBc. The total DC power consumption is 120 mW, and the droop rate is 4 μV/ps. The size is 2.135 × 0.865 mm2.
Lastly, the future work and the conclusions are addressed in Chapter 6
關鍵字(中) ★ 矽基製程
★ 追蹤保持放大器
★ 取樣電路
★ 低改變率
★ 高線性度
★ 高速類比互補式金屬氧化物半導體設計
關鍵字(英) ★ Track-and-Hold Amplifier
★ High-speed analog CMOS design
★ Sige
★ RF and mixed signal IC design
★ RF front ends sampling circuit
★ High linearity
論文目次 目錄
摘要 IX
Abstract XII
目錄 XIV
圖目錄 XVI
表目錄 XXII
第1章 緒論 1
1.1 研究動機及背景 1
1.2 現況研究及發展 3
1.3 論文貢獻 6
1.4 論文架構 7
第2章 追蹤保持放大器及頻率取樣介紹 8
2.1 簡介 8
2.2 設計重點與重要參數介紹 9
2.3 取樣原理與降頻率取樣 (Undersampling) 12
2.4 線性度討論 15
2.5 改變率討論 17
2.6 量測設置介紹 19
第3章 使用40 nm CMOS製程具時脈緩衝器頻寬為DC到42 GHz追蹤保持放大器 21
3.1 製程簡介 21
3.2 開關電容式追蹤鎖定級設計 22
3.2.1 差動式消除器設計 23
3.2.2 設計雜散電晶體與消除器 29
3.3 輸出與輸入緩衝級設計 32
3.4 時脈緩衝器設計 34
3.5 整體電路模擬 37
3.6 電路實作與量測 43
3.7 電路改進 49
3.8 總結 51
第4章 使用0.18 μm SiGe BiCMOS製程頻寬為DC到34 GHz追蹤保持放大器 53
4.1 製程簡介 53
4.2 改良開關射極隨耦式設計 54
4.2.1 源極隨耦式開關設計 54
4.2.2 線性度改良設計[52] 58
4.3 輸入與輸出緩衝級設計 60
4.4 整體電路模擬 62
4.5 電路實作與量測 68
4.6 總結 73
第5章 使用0.18 μm SiGe BiCMOS製程頻寬DC到40 GHz主從式追蹤保持放大器 75
5.1 輸入與輸出緩衝級設計 75
5.2 整體電路模擬 77
5.3 電路實作與量測 83
5.4 電路改進 89
5.5 總結 91
第6章 結論 93
參考文獻 94
參考文獻 參考文獻
[1] M. Ding, P. Harpe, Y.-H. Liu, B. Busze, K. Philips, and H. d. Groot, “A 46 μW 13 b 6.4 MS/s SAR ADC With Background Mismatch and Offset calibration,” in IEEE Journal of Solid-State Circuits, Vol. 52, No. 2, pp. 423-432, Feb. 2017.
[2] M. Krämer, E. Janssen, K. Doris, and B. Murmann, “A 14-Bit 30-MS/s 38-mW SAR ADC Using Noise Filter Gear Shifting,” in IEEE Transactions on Circuits and Systems—II: Express Briefs, Vol. 64, No. 2, pp. 116-120, Feb. 2017.
[3] C.-C. Liu, M.-C. Huang, and Y.-H. Tu, “A 12 bit 100 MS/s SAR-Assisted Digital-Slope ADC,” in IEEE Journal of Solid-State Circuits, Vol. 51, No. 12, pp. 2941-2950, Dec. 2016.
[4] Y. Lim, and M. P. Flynn, “A 100 MS/s, 10.5 Bit, 2.46 mW Comparator-Less Pipeline ADC Using Self-Biased Ring Amplifiers,” in IEEE Journal of Solid-State Circuits, Vol. 50, No. 10, pp. 2331-2341, Oct. 2015.
[5] R. Sehgal, F. v. d. Goes, and K. Bult, “A 12 b 53 mW 195 MS/s Pipeline ADC with 82 dB SFDR Using Split-ADC Calibration,” in IEEE Journal of Solid-State Circuits, Vol. 50, No. 7, pp. 1592-1603, Jul. 2015.
[6] J. Lin, D. Paik, S. Lee, M. Miyahara, and A. Matsuzawa, “An Ultra-Low-Voltage 160 MS/s 7 Bit Interpolated Pipeline ADC Using Dynamic Amplifiers,” in IEEE Journal of Solid-State Circuits, Vol. 50, No. 6, pp. 1399-1411, Jun. 2015.
[7] G. Tretter, M. M. Khafaji, D. Fritsche, C. Carta, and F. Ellinger, “Design and Characterization of a 3-bit 24-GS/s FlashADC in 28-nm Low-Power Digital CMOS,” in IEEE Transactions on Microwave Theory and Technique, Vol. 64, No. 4, pp. 1143-1152, Apr., 2016.
[8] Y. Xu, L. Belostotski, and J. W. Haslett, “A 65-nm CMOS 10-GS/s 4-bit Background-Calibrated Noninterleaved Flash ADC for Radio Astronomy,” in IEEE Transactions on Very Large Scale Integration (VLSI) Systems, Vol. 22, No. 11, pp. 2316-2325, Nov. 2014.
[9] P. Ritter, S. L. Tual, B. Allard, and M. Möller, “Design Considerations for a 6 Bit 20 GS/s SiGe BiCMOS Flash ADC Without Track-and-Hold,” in IEEE Journal of Solid-State Circuits, Vol. 49, No. 9, pp. 1886-1894, Sep. 2014.
[10] B. V. Hieu, S. Beak, S. Choi, J. Seon, and T. T. Jeong, “Thermometer-to-binary Encoder with Bubble Error Correction (BEC) Circuit for Flash Analog-to-Digital Converter (FADC),” in IEEE International Conference on Communications and Electronics, pp. 102-106, Nha Trang, Vietnam, Aug. 2010.
[11] Y.-J. Chuang, H.-H. Ou, and B.-D. Liu, “A Novel Bubble Tolerant Thermometer-to-Binary Encoder for Flash A/D Converter,” in IEEE VLSI-TSA International Symposium on VLSI Design, Automation and Test (VLSI-TSA-DAT), pp. 315-318, Hsinchu, Taiwan, Apr. 2005.
[12] D. Lee, J. Yoo, K. Choi, and J. Ghaznavi, “Fat Tree Encoder Design for Ultra-High Seed Flash A/D Convertors,” in IEEE the 45th Midwest Symposium on Circuits and Systems (MWSCAS), Vol. 2, pp. II-87-II-90, Tulsa, Oklahoma, Aug. 2002.
[13] B. Xu, Y. Zhou, and Y. Chiu, “A 23-mW 24-GS/s 6-bit Voltage-Time Hybrid Time-Interleaved ADC in 28-nm CMOS,” in IEEE Journal of Solid-State Circuits, Vol. PP, No. 99, pp. 1-10, Jan. 2017.
[14] B. T. Reyes, R. M. Sanchez, A. L. Pola, and M. R. Hueda, “Design and Experimental Evaluation of a TimeInterleaved ADC Calibration Algorithm for Application in High-Speed Communication Systems,” in IEEE Transactions on Circuits and Systems—I: Regular Papers, Vol. PP, No. 99, pp. 1-12, Dec. 2016.
[15] C.-Y. Lin and T.-C. Lee, “A 12-bit 210-MS/s 2-Times Interleaved Pipelined-SAR ADC With a Passive Residue Transfer Technique,” in IEEE Journal of Solid-State Circuits, Vol. 63, No. 7, pp. 929-938, Jun. 2016.
[16] H. Orser, and A. Gopinath, “A 20 GS/s 1.2 V 0.13 μm CMOS Switched Cascode Track-and-Hold Amplifier,” in IEEE Transactions on Circuits and Systems—II: Express Briefs, Vol. 57, No. 7, pp. 512-516, Jul., 2010.
[17] S. Yamanaka, K. Sano, and K. Murata, “A 20-Gs/s Track-and-Hold Amplifier in InP HBT Technology,” in IEEE Transactions on Microwave Theory and Technique, Vol. 58, No. 9, pp. 2334-2339, Sep., 2010.
[18] H.-G. Wei, U-F. Chio, Y. Zhu, S.-W. Sin, S.-P. U, and R. P. Martins, “A Rapid Power-Switchable Track-and-Hold Amplifier in 90-nm CMOS,” in IEEE Transactions on Circuits and Systems—II: Express Briefs, Vol. 57, No. 1, pp. 16-20, Jan., 2010.
[19] Y. Bouvier, A. Ouslimani, A. Konczykowska, and J. Godin, “A 40 Gsamples/s InP-DHBT Track-&-Hold Amplifier,” in IEEE The 5th European Microwave Integrated Circuits Conference, pp. 61-64, Paris, France, Sep., 2010.
[20] Y. Borokhovych, J. C. Scheytt, “10 GS/s 8-bit bipolar THA in SiGe technology,” in IEEE NORCHIP, pp. 1-4, Lund, Sweden, Nov., 2011.
[21] J. Deza, A. Ouslimani, A. Konczykowska, A. Kasbari, M. Riet, J. Godin, and G. Pailler, “A 50-GHz small signal bandwidth 50 GSa/s Track&Hold Amplifier in InP DHBT technology,” in IEEE MTT-S International Microwave Symposium (IMS), pp. 1-3, Montreal, Canada, Jun., 2012.
[22] H.-L. Chen, S.-C. Cheng, and B.-W. Chen, “A 5-GS/s 46-dBc SFDR Track and Hold Amplifier,” in IEEE International Symposium on Intelligent Signal Processing and Communication Systems (ISPAC), pp. 636-639, New Taipei City, Taiwan, Nov., 2012.
[23] M. Macedo, G. W. Roberts, and I. Shih, “Track and hold for Giga-sample ADC applications using CMOS technology,” in IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2725-2728, Seoul, South Korea, May, 2012.
[24] J. Deza, A. Ouslimani, A. Konczykowska, A. Kasbari, and J. Godin, “A 4 GSa/s, 16-GHz input bandwidth master-slave track-and-hold amplifier in InP DHBT technology,” in IEEE 20th Telecommunications Forum (TELFOR), pp. 502-505, Belgrade, Serbia, Nov., 2012.
[25] G. Tretter, D.Fritsche, C. Carta, and F. Ellinger, “10-GS/s Track and Hold Circuit in 28 nm CMOS,” in IEEE International Semiconductor Conference Dresden - Grenoble (ISCDG), pp. 1-3, Dresden, Germany, Sep., 2013.
[26] S. Daneshgar, Z. Griffith, M. Seo, and M. J. W. Rodwell, “Low Distortion 50 GSamples/s Track-Hold and Sample-Hold Amplifiers,” in IEEE Journal of Solid-State Circuits, Vol. 49, No. 10, pp. 2114-2126, Oct., 2014.
[27] S. Ma, L. Wang, H. Yu, and J. Ren, “A 32.5-GS/s Sampler With Time-Interleaved Track-and-Hold Amplifier in 65-nm CMOS,” in IEEE Transactions on Microwave Theory and Technique, Vol. 62, No. 12, pp. 3500-3511, Dec., 2014
[28] H. Aggrawal, and A. Babakhani, “A 40GS/s Track-and-Hold Amplifier with 62dB SFDR3 In 45nm CMOS SOl,” in IEEE MTT-S International Microwave Symposium (IMS), pp. 1-3, Tampa Bay, USA, Jun., 2014.
[29] D. Lal, M. Abbasi, and D. S. Ricketts, “A Compact, High Linearity 40GS/s Track-and-Hold Amplifier in 90nm SiGe Technology,” in IEEE Custom Integrated Circuit Conference (CICC), pp. 1-4, San Jose, USA, Sep, 2015.
[30] Y.-C. Liu, H.-Y. Chang, S.-Y. Huang, and K. Chen, “Design and Analysis of CMOS High-Speed High Dynamic-Range Track-and-Hold Amplifiers,” in IEEE Transactions on Microwave Theory and Technique, Vol. 63, No. 9, pp. 2841-2853 Sep., 2015.
[31] K. N. Madsen, T. D. Gathman, S. Daneshgar, T. C. Oh, J. C. Li, and J. F. Buckwalter, “A High-Linearity, 30 GS/s Track-and-Hold Amplifier and Time Interleaved Sample-and-Hold in an InP-on-CMOS Process,” in IEEE Journal of Solid-State Circuits, Vol. 50, No. 11, pp. 2692-2702, Nov. 2015.
[32] Y.-A. Lin, Y.-C. Yeh, Y.-C. Liu, and H.-Y. Chang, “A 55-dB SFDR 16-GS/s track-and-hold amplifier in 0.18 μm SiGe using differential feedthrough cancellation technique,” in IEEE MTT-S International Microwave Symposium (IMS), pp. 1-4, San Francisco, USA, May 2016.
[33] G. Tretter, D. Fritsche, M. Mahdi Khafaji, C. Carta, and F. Ellinger, “A 55-GHz-Bandwidth Track-and-Hold Amplifier in 28-nm Low-Power CMOS,” in IEEE Transactions on Circuits and Systems—II: Express Briefs, Vol. 63, No. 3, pp. 229-233, MAR. 2016.
[34] K. Vasilakopoulos, A. Cathelin, P. Chevaliert, T. Nguyen and S.P. Voinigescu, “A l08GS/s Track and Hold Amplifier with MOS-HBT Switch,” in IEEE MTT-S International Microwave Symposium (IMS), pp. 1-4, San Francisco, USA, May 2016.
[35] A. Meyer, P. Desgreys, H. Petit, B. Louis, and R. Corbiere, “Single-ended/differential 2.5-GS/s Double Switching Track-and-Hold Amplifier with 26GHz Bandwidth in SiGe BiCMOS Technology,” in IEEE MTT-S International Microwave Symposium (IMS), pp. 1-3, San Francisco, USA, May 2016.
[36] A. Moriyama, S. Taniyama, and T. Waho, “A Low-Distortion Switched-Source-Follower Track-and-Hold Circuit,” in IEEE International Conference on Electronics, Circuits, and Systems (ICECS), pp. 105-108, Seville, Spain, Dec. 2012.
[37] Y.-C. Liu, H.-Y. Chang, and K. Chen, “A 12 GB/s 3-GHz input bandwidth track-and-hold amplifier in 65 nm CMOS with 48-dB spur-free dynamic range,” in IEEE MTT-S Int. Microw. Symp. Dig., Florida, USA, June 2014
[38] X. Li, W. L. Kuo, Y. Lu, R. Krithivasan, J. D. Cressler, and A. J. Joseph, “A 5-bit, 18 GS/sec SiGe HBT track-and-hold amplifier,"in IEEE Compound Semiconductor Integrated Circuit Symposium, Nov. 2005, pp. 105-108.
[39] E. L. Ginzton, W. R. Hewlett, J. H. Jasberg, and J. D. Noe, “Distributed amplification,” in Proc. I.R.E., vol. 36, Aug. 1948, pp. 956–969.
[40] Seong-Kyun Kim, S. Daneshgar, A. D. Carter, Myung-Jun Choe, M. Urteaga and M. J. W. Rodwell, "A 30 GSample/s InP/CMOS sample-hold amplifier with active droop correction," 2016 IEEE MTT-S International Microwave Symposium (IMS), San Francisco, CA, 2016, pp. 1-4
[41] B. Razavi, Principles of Data Conversion System Design, Willey-IEEE Press, 1994.
[42] G. Tretter, D. Fritsche, C. Carta and F. Ellinger, “Enhancing the Input Bandwidth of CMOS Track and Hold Amplifiers,” in IEEE 20th Microwaves, Radar, and Wireless Communication (MIKON), pp. 1-4, GDAŃSK, Poland, Jun. 2014.
[43] P. Wambacq and W. M. Sansen, Distortion Analysis of Analog Integrated Circuits. Boston, MA, USA: Kluwer Academic, 1998.
[44] P. G. Fonstad, Microelectronic Devices and Circuits. 2006 Electronic Edition.
[45] T. H. Lee, The Design of CMOS Radio-Frequency Integrated Circuit, 2nd ed. Cambridge, UK. Cambridge University Press, 2004.
[46] B. Razavi, RF Microelectronics, Prentice Hall, 2011.
[47] P. V. Tesla, C. Carta, and F. Ellinger,“Analysis an Design of a 220-GHz Wideband SiGe BiCMOS Distributed Active Combiner,” in IEEE Transactions on Microwave Theory and Technique, vol. 64, no. 10, pp. 3049-3059, Oct. 2016.
[48] S.-H. Chen, “Dual-gate Device Modeling and Microwave/Millimeter-Wave Distributed Amplifier Design,” Master thesis, National Central University, Zhongli, Taoyuan, Taiwan, 2012.
[49] Sonnet User’s Guide, 12th ed. North Syracuse, NY: Sonnet Softw.Inc., 2009.
[50] Y. Li, W.-L. Goh and Y.-Z. Xiong, “A 2 to 92 GHz Distrubuted Amplifier Using 70-nm InP HEMTs,” in IEEE Wireless Symposium (IWS), Shenzhen, China pp.1-4, Mar. 2015.
[51] C.-L. Ler, A. K. b. A’ain, and A. V. Kordesch, “Compact, High-Q, and Low-Current Dissipation CMOS Differential Active Inductor”, IEEE Microwave and Wireless Component Letters, Vol. 18, No. 10, pp. 381-382, Oct. 2008.
[52] 林俞安,使用砷化鎵矽化鍺金氧半場效應電晶體之高速高線性度高解析度追蹤保持放大器,國立中央大學電機工程研究所碩士論文,民國106年。
[53] 黃冠霖,使用矽基製程之低改變率高速寬頻追蹤保持放大器電路,國立中央大學電機工程研究所碩士論文,民國107年。
指導教授 張鴻埜(Hong-Yeh Chang) 審核日期 2019-8-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明