博碩士論文 106521088 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:163 、訪客IP:18.224.214.215
姓名 黃得祐(Te-Yu Huang)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 應用於儲能系統之隔離式雙向直流/直流轉換器設計
(Design of Isolated Bidirectional DC/DC Converter for Energy Storage System)
相關論文
★ 高效能電子轉向控制器設計★ 微電網能源管理系統優化調度基於螢火蟲移動迴歸策略
★ 以半區間法為基礎之最大功率追蹤技術於能源轉換系統之設計★ 智慧型電力品質事件辨識技術於分散式能源 之監測辨識系統開發
★ 以自適應性線性濾波器與頻率檢測法為基礎之並聯主動式電力濾波器設計★ 以互補式單側多脈波寬度調變之低電流漣波高增益比昇壓轉換器研製
★ 以類神經網路為基礎之時頻域混合交流電弧爐模型於電力品質分析之應用★ 以虛擬同步發電機為基礎之微電網轉換器控制算法設計
★ 以IEEE 1459標準為基礎之選擇性補償策略應用於並聯式主動電力濾波器設計★ 結合雙二階廣義積分法與鎖頻迴路為基礎 之串聯式主動電力濾波器設計
★ 微電網與市電併聯之同步控制器設計★ 以自適應性為基礎之遞迴式最小二乘方法應用於配電型靜態同步補償器設計
★ 磁共振式無線功率傳輸系統之線圈及鐵氧體設計與分析★ 具共振頻率切換之多輸出無線功率傳輸裝置研製
★ 高功率雷射源之切換式電源供應器★ 應用於微電網故障保護之專家系統
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 由於再生能源不穩定之情況,因此本文設計可調節功率之隔離式雙向直流/直流轉換器,其主要功能為調度微電網系統內部直流匯流排與儲能系統間之能量流動。藉由此轉換器之設計,實現電能可以雙向流通來及時補足微電網系統所需功率,並提高能源的轉換效率。
本文的系統架構主要為相移全橋/推挽式雙向轉換電路,透過脈波相位調變達成相移技術產生零電壓切換,其數位控制採用Renesas公司所生產之型號 RX62T微控制器,可執行類比數位之轉換、開關訊號控制及電路保護機制等功能。當微電網系統功率充餘時,其轉換器將操作於降壓模式,使儲能系統進行充電;反之,其轉換器將操作於昇壓模式,使儲能系統進行放電,補足微電網系統所欠缺功率。
最後,本文使用電路模擬軟體驗證系統架構且實際製作一部具柔性切換之隔離式雙向直流/直流轉換器,並藉由實測結果來證實此架構之可行性。
摘要(英) Due to the instability of renewable energy, this thesis designs an isolated bidirectional DC/DC converter with adjustable power. It proposes on control the energy flow between DC bus and energy storage system. With this design of converter, the electrical energy can be bidirectionally flow to supplement the power required by the electrical system and improve the energy efficiency.
The electric circuit of this paper is phase-shifted full-bridge/push-pull bidirectional circuit. Pulse phase modulation is used to achieve zero-voltage switching. The digital control uses the RX62T microcontroller which is produced by Renesas, it can perform analog-to-digital convertor, switching signal control and circuit protection mechanisms. When the system power is replenished, the converter will operate in the buck mode to charge the battery of energy storage system; otherwise, the converter will operate in the boost mode to discharge the battery of energy storage system to supply the system.
Finally, this paper uses the circuit simulation software to verify system architecture and produces an isolated bidirectional DC/DC converter with soft switching. It confirms the feasibility of this architecture by the results.
關鍵字(中) ★ 隔離式雙向直流/直流轉換器
★ 相移全橋/推挽式
★ 柔性切換
關鍵字(英) ★ Isolated Bidirectional DC/DC converter
★ Phase Shifted Full-Bridge/Push-Pull
★ Soft-switching
論文目次 論文摘要 I
Abstract II
致謝 III
目錄 IV
圖目錄 VII
表目錄 X
第一章 緒論 1
1-1 研究背景 1
1-2 研究動機與目的 2
1-3 論文大綱 5
第二章 相移全橋/推挽式雙向轉換器 6
2-1 切換損失與柔性切換 6
2-2 雙向轉換電路 8
2-3 相移全橋/推挽式雙向轉換電路 12
2-3-1 電路架構 12
2-3-2 降壓模式操作原理 13
2-3-3 昇壓模式操作原理 20
第三章 硬體電路設計 24
3-1 硬體規格與架構 24
3-2 主電路 25
3-2-1 功率開關 25
3-2-2 高頻變壓器 29
3-2-3 高壓側電容 32
3-2-4 低壓側電容 33
3-2-5 低壓側電感 34
3-2-6 諧振電感 36
3-2-7 諧振電感鐵芯選擇 38
3-3 週邊電路 41
3-3-1 開關驅動 41
3-3-2 電壓回授 42
3-3-3 電流回授 43
第四章 數位控制器設計 45
4-1微控制器介紹 45
4-2 數位控制分析 49
4-3 程式規劃 50
4-3-1 主程式 50
4-3-2 降壓軟啟動 51
4-3-3 降壓模式 52
4-3-4 昇壓軟啟動 54
4-3-5 昇壓模式 55
第五章 模擬與實驗結果 56
5-1 電路模擬 56
5-1-1 降壓模式之電路模擬 56
5-1-2 昇壓模式之電路模擬 59
5-2 電路實測 61
5-2-1 降壓模式之電路實測 61
5-2-2 昇壓模式之電路實測 64
5-3 電路整體效率 67
第六章 結論與未來發展 68
6-1 結論 68
6-2 未來發展 69
參考文獻 70
參考文獻 [1] Daniel E. Olivares, Ali Mehrizi-Sani, Amir H. Etemadi, Claudio A. Cañizares, Reza Iravani, Mehrdad Kazerani, Amir H. Hajimiragha, Oriol Gomis-Bellmunt, Maryam Saeedifard, Rodrigo Palma-Behnke, Guillermo A. Jiménez-Estévez, and Nikos D. Hatziargyriou, “Trends in Microgrid Control,” IEEE Trans. on Smart Grid, Vol. 5, No. 4, pp. 1905-1919, 2014.
[2] Xiong Liu, Peng Wang, and Poh Chiang Loh, “A Hybrid AC/DC Microgrid and Its Coordination Control,” IEEE Trans. on Smart Grid, Vol. 2, No. 2, pp. 278-286, 2011.
[3] Ahmad Mousavi, Soft-Switching DC-DC Converters, 2013.
[4] 江炫樟,「電力電子學」,台灣,全華圖書股份有限公司,2003年。
[5] Hyun-Woo Kim, and Joung-Hu Park, “Isolated Bidirectional Switched-capacitor Flyback Converter,” International Power Electronics and Application Conference and Exposition, Shanghai, China, Nov. 2014.
[6] Mohd. Kashif, “Bidirectional Flyback DC-DC Converter for Hybrid Electric Vehicle: Utility, Working and PSPICE Computer Model,” Asia Pacific Conference on Postgraduate Research in Microelectronics and Electronics, Hyderabad, India, Dec. 2012.
[7] Dhruvil Solanki, Omkar Malwadkar, Sachin Mahajan, Sanket Nikam, and Rutuja Bajaga, “Design of bidirectional push pull converter for microgrid applications,” Second International Conference on Electrical, Computer and Communication Technologies (ICECCT), Coimbatore, India, Feb. 2017.
[8] Pan Xuewei, and Akshay Kumar Rathore, “Current-Fed Soft-Switching Push–Pull Front-End Converter-Based Bidirectional Inverter for Residential Photovoltaic Power System,” IEEE Trans. on Power Electronics, Vol. 29, No. 11, pp. 6041-6051, 2014.
[9] M.K. Kazimierczuk, D.Q. Vuong, B.T. Nguyen, and J.A. Weimer, “Topologies of Bidirectional PWM DC-DC Power Converters,” Proceedings of the IEEE National Aerospace and Electronics Conference-NAECON, Dayton, OH, USA, May. 1993.
[10] Wasan Phetphimoon, and Krischonme Bhumkittipich, “Modeling and Simulation of Bidirectional Half Bridge DC-DC Converter,” International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON), Chiang Mai, Thailand, June. 2016.
[11] Yu Du, Srdjan Lukic, Boris Jacobson, and Alex Huang, “Review of High Power Isolated Bi-directional DC-DC Converters for PHEV/EV DC Charging Infrastructure,” IEEE Energy Conversion Congress and Exposition, Phoenix, AZ, USA, Sept. 2011.
[12] Arafat Hasnain, and Nisha Kondrath, “Investigation into Component Losses and Efficiency of a Bidirectional Full-Bridge DC-DC Converter,” Conference of the IEEE Industrial Electronics Society, Washington, DC, USA, Oct. 2018.
[13] Satoshi Ikeda, and Fujio Kurokawa, “Isolated Bidirectional Boost Full Bridge DC-DC Converter for Energy Storage System,” European Conference on Power Electronics and Applications, Riga, Latvia, Sept. 2018.
[14] Koji Yamamoto, Eiji Hiraki, Toshihiko Tanaka, Mutsuo Nakaoka, Tomokazu Mishima, “Bidirectional DC-DC Converter with Full-bridge / Push-pull circuit for Automobile Electric Power Systems,” IEEE Power Electronics Specialists Conference, Jeju, South Korea, June. 2006.
[15] Hrishikesh Nene, and Toshiyuki Zaitsu, “Bi-Directional PSFB DC-DC Converter with Unique PWM Control Schemes and Seamless Mode Transitions using Enhanced Digital Control,” IEEE Applied Power Electronics Conference and Exposition, Tampa, FL, USA, March. 2017.
[16] Hrishikesh Nene, “Digital Control of a Bi-Directional DC-DC Converter for Automotive Applications,” IEEE Applied Power Electronics Conference and Exposition, Long Beach, CA, USA, March. 2013.
[17] C2M0280120D, Datasheet, CREE, Oct. 2015.
[18] RCX511N25, Datasheet, ROHM SEMICONDUCTOR, Feb. 2016.
[19] https://product.tdk.com
[20] Chuan-Sheng Liu, Liang-Rui Chen, and B. Z. Li, Z. P. Huang, “The Implementation of A Full-Bridge Phase-Shifted Zero-Voltage-Switching Power Converter,” International Conference on Power Electronics and Drive Systems, Taipei, Taiwan, Nov. 2009.
[21] 張鎮東,「相移全橋直流轉換器之研製」,國立臺北科技大學電機工程系碩士論文,2007年。
[22] Jan A. Ferreira, “Improved Analytical Modeling of Conductive Losses in Magnetic Components,” IEEE Trans. on Smart Grid, Vol. 9, No. 1, pp. 127-131, 1994.
[23] MAGNETIC POWDER CORES Ver.15, CSC, Sep. 2015.
[24] ACS712, Datasheet, Allegro MicroSystems, Dec. 2018.
[25] TLP352, Datasheet, Toshiba, Sep. 2016.
[26] RX62T Group & RX62G Group MCUs, Datasheet, Renesas, Jan. 2014.
指導教授 陳正一(Cheng-I Chen) 審核日期 2019-8-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明