博碩士論文 105521036 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:39 、訪客IP:18.220.106.241
姓名 陳紫宜(Zi-Yi Chen)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 具高通濾波補償之10 Gb/s全速率自適應 四階脈波振幅調變等化器
(A 10 Gb/s Full-Rate Adaptive PAM-4 Equalizer with High-Pass Filter Compensation)
相關論文
★ 一種應用於觸控液晶顯示器的新型嵌入式開關★ 多重相位之延遲鎖定迴路倍頻器設計與分析
★ 2.5Gbps串列收發器設計★ 具低抖動與可適應式頻寬之自我偏壓鎖相迴路設計
★ 應用於串列傳輸之2.5GB/s CMOS 超取樣資料回復電路★ 全數位任意責任週期之同步映射延遲電路
★ 全數位式互補金屬氧化半導自我取樣延遲線電路用於時脈抖動量測★ 500MHz,30個相位輸出之鎖相迴路應用於三倍超取樣時脈回復系統
★ 設計於90奈米製程輸出頻率為100MHz-1GHz之具可適應性頻寬鎖相迴路★ 高解析度可變動責任週期之同步複製延遲電路
★ 奈米CMOS晶片內序列傳輸之接收器★ 奈米CMOS晶片內序列傳輸之送器
★ 基於鎖相迴路之多重相位脈波產生器★ 低能量時脈儲存元件之分析、設計與量測
★ 具有預先增強器之Gbps串列連結傳送器及全數位超取樣資料回復器★ 應用於10Gbps晶片系統傳輸鏈之低抖動自我校準鎖相迴路設計
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2024-7-31以後開放)
摘要(中) 近年來,隨著電子消費性產品的蓬勃發展,資料傳遞頻寬日漸提升,然而晶片與晶片之間的通道頻寬並未隨之上升,因此資料通過傳輸通道會受到符碼間干擾的影響導致訊號完整度下降,因此等化器被廣泛應用於接收端以補償資料經過通道所導致的衰減。
本論文提出一高通濾波決策回授等化器(High-Pass Filter Decision Feedback Equalizer, HPF-DFE),可以讓回授訊號更貼近後游標符碼間干擾,可以同時針對資料符碼間干擾及邊緣符碼間干擾進行消除,在決策回授等化器延遲時間不同時,眼寬較不會有惡化的情形,並且利用連續時間線性等化器(Continuous time linear equalizer, CTLE)以及一階高通濾波決策回授等化器的整合,以達到降低硬體複雜度與整體功率消耗的效果,與此同時,在不同的通道衰減中,自適應系統可以分別對於CTLE以及HPF-DFE的補償量進行最佳化,達到更大的使用彈性。
本論文使用TSMC 40 nm (TN40G) 1P9M CMOS 製程實現,電路操作電壓為0.9 V,輸入資料速率為10 Gb/s,輸入時脈頻率為5 GHz,通道衰減可用範圍為4 dB到12 dB,在通道衰減4 dB時,補償後之四階脈波振幅調變(PAM-4)資料的峰對峰值抖動量為68 ps,方均根抖動量為23 ps; 在通道衰減12 dB時,補償後之PAM-4資料的峰對峰值抖動量為88 ps,方均根抖動量為28 ps。在通道衰減12 dB時之整體功率消耗為9.45 mW,其中CTLE以及DFE之等化器功率消耗為5.08 mW,自適應機制電路之功率消耗為4.37 mW,晶片面積為1.13 mm2,其中核心電路面積為0.04 mm2。
摘要(英) With the rapid development of electronic consumer products, the bandwidth of data transmission has been increasing. However, the signal integrity of high speed data transmission is worse since the limiting bandwidth of channel. Therefore, the equalizer is widely used at receiver to compensate the attenuate signal.
The thesis presents an innovative decision feedback equalizer with high-pass filter compensation. Both the data inter-symbol-interference (ISI) and edge ISI can be eliminated simultaneously. Therefore, the eye width of data will not deteriorate seriously when the loop delay is different. In addition, the CTLE and 1-tap HPF-DFE are integrated to reduce the hardware complexity and overall power consumption. At the same time, in different channel attenuation, the adaptive system can optimize the compensation of CTLE and HPF-DFE respectively, achieving greater flexibility of use.
This work is designed by TSMC 40 nm (TN40G) 1P9M CMOS process. When the channel loss is 4 dB, the peak-to-peak jitter of equalized PAM-4 data is 68 ps and the root mean square (RMS) jitter is 23 ps. When channel loss is 12 dB, the peak-to-peak jitter of equalized PAM-4 data is 88 ps and the RMS jitter is 28 ps. The power consumption is 9.45 mW at a supply voltage of 0.9 V and the channel loss of 12 dB. The entire equalizer and the overall adaptative system utilize 5.08 mW and 4.37 mW of power, respectively. The chip area is 1.13 mm2 and the core area is 0.04 mm2.
關鍵字(中) ★ 等化器
★ 自適應
★ 連續時間線性等化器
★ 決策回授等化器
關鍵字(英) ★ Equalizer
★ Adaptive
★ CTLE
★ DFE
論文目次 摘要 i
Abstract ii
致謝 iii
目錄 v
圖目錄 viii
表目錄 xii
第1章 緒論 1
1.1 研究動機 1
1.2 論文架構 3
第2章 高速串列傳輸之訊號完整性 5
2.1 基本觀念 5
2.1.1 隨機二位元資料特性 5
2.1.2 資料編排形式 6
2.1.3 四階脈波振幅調變(Four-level Pulse Amplitude, PAM-4) 7
2.1.4 傳輸線理論 8
2.2 單一位元脈衝響應與等化器之關係 13
2.3 眼圖分析 16
2.4 誤碼率 17
第3章 等化器簡介 20
3.1 等化器電路的種類 20
3.1.1 連續時間線性等化器(CTLE) 21
3.1.2 決策回授等化器(DFE) 22
3.1.2.1 決策回授等化器回授延遲探討 24
3.1.3 前饋式回授等化器(FFE) 26
3.2 自適應機制 27
3.2.1 最小均方演算法(LMS) 27
3.2.2 SS-LMS技術應用於自適應決策回授等化器 30
3.2.3 SS-LMS之使用條件 32
3.2.4 逼零演算法(Zero-Forcing Algorithm) 35
3.3 傳統等化器電路文獻探討 36
3.3.1 多階數決策回授等化器 36
3.3.2 二階無限脈衝響應決策回授等化器 37
3.3.3 資料邊緣決策回授等化器 38
3.4 比較與討論 39
第4章 具自適應之連續時間線性等化器與高通濾波決策回授等化器設計與實現 40
4.1 電路架構 40
4.2 操作說明 42
4.2.1 高通濾波決策回授等化器(HPF-DFE)補償分析 42
4.2.2 在具有ISI情況下之等化器補償情況 43
4.3 行為模擬 45
4.4 子電路設計實現及模擬分析 47
4.4.1 連續時間線性等化器(CTLE) 47
4.4.2 一階高通濾波決策回授等化器(1-Tap HPF-DFE) 49
4.4.3 自適應系統(Adaptive System) 52
4.4.3.1 訊號序列偵測器(Data Pattern Detector) 53
4.4.3.2 LMS演算系統(LMS Algorithm System) 54
4.4.3.3 補償增益調整機制(Gain Adaptive System) 55
4.4.3.4 迴路切換機制(Switch Mechanism) 57
4.5 模擬結果 59
4.5.1 通道模型 59
4.5.2 具自適應之10 Gb/s等化器模擬 61
4.5.2.1 佈局前之短通道模擬(Channel Loss = 4 dB @ 2.5 GHz) 61
4.5.2.2 佈局前之長通道模擬(Channel Loss = 12 dB @ 2.5 GHz) 64
4.5.2.3 佈局後之短通道模擬(Channel Loss = 4 dB @ 2.5 GHz) 67
4.5.2.4 佈局後之長通道模擬(Channel Loss = 12 dB @ 2.5 GHz) 70
4.5.3 模擬結果分析及比較 73
第5章 晶片佈局與量測 77
5.1 電路佈局 77
5.1.1 晶片封裝 78
5.1.2 佈局規劃與電源規劃 80
5.2 量測考量 81
5.2.1 量測環境設置 81
5.2.2 高頻輸出緩衝器 82
5.2.3 高頻時脈輸入端 83
5.2.4 M8048A ISI通道 84
5.3 規格比較表 85
第6章 結論 86
6.1 結論 86
6.2 未來研究方向 87
參考文獻 88
參考文獻 [1] VESA DisplayPort Standard, Version 1, Revision 2, Jan. 2010.
[2] Universal Serial Bus Specification, Revision 3.1, USB-IO, 2013.
[3] Serial ATA International Organization, Serial ATA Revision 3.0, SATA-IO, 2009.
[4] PCI Express® Base Specification, Revision 2.1, PCI-SIG, 2010.
[5] 孫世洋, “以符碼間干擾偵測技術實現自適應等化器之5 Gbps半速率時脈與資料回復電路,” 碩士論文, 國立中央大學, 2016.
[6] Behzad Razavi, Design of Integrated Circuits for Optical Communications. McGraw-Hill: Behzad Razavi, 2003.
[7] A.-X. Widmer, and P.-A. Franaszek, “A DC-balanced, partitioned-block, 8b/10b reansmission code,” IBM J. Res and Develop., vol. 27, pp. 440-451, Sep. 1983.
[8] J. Lee, P.-C. Chiang, et al, “Design of 56 Gb/s NRZ and PAM4 SerDes Transceivers in CMOS Technologies,” IEEE J. Solid-State Circuits, vol. 50, no. 9, pp. 2061–2073, Sep. 2015
[9] S. H. Hall, G. W. Hall, and J. A. McCall, High-speed digital system design-Ahandbook of interconnect theory and design practices, John-Wiley, 1st ed., 2002
[10] Altera Corporation, “Deterministic Jitter (DJ) Definition and Measurement,” 2009.
[11] SHF Communication Technologies AG, “Application Note AN-JITTER-1-Jitter Analysis using SHF 10000 Series Bit Error Rate Testers,” 2005.
[12] Maxim, “Optical receiver performance evaluation”.
[13] K.-H. Cheng, Y.-C. Tsai, Y.-H. Wu, and Y.-F. Lin,“A 5-Gb/s Inductorless CMOS Adaptive Equalizer for PCI Express Generation II Applications ,”IEEE Trans. Circuits Syst. II, Express Briefs , vol. 57 , no. 5 , pp. 324-328 , May. 2010 (EI,SCI)
[14] J.-W. Jung, and B. Razavi, “A 25 Gb/s 5.8 mW CMOS Equalizer,” IEEE J. Solid-State Circuits, vol. 50, no. 2, pp. 515–526, Feb. 2015 (EI,SCI)
[15] J.-S Choi, M.-S Hwang, and D.-K. Jeong, “A 0.18-µm CMOS 3.5-Gb/s continuous-time adaptive cable equalizer using enhanced low-frequency gain control method,” IEEE J.Solid-State Circuits, vol. 39, no. 3, pp.419-425, Mar. 2004.
[16] C. A. Belfiore and J. John H. Park, “Decision Feedback Equalization,” Proceedings of the IEEE, vol. 67, pp. 1143-1156, Aug. 1979.
[17] J. Proakis, “Digital Communication, McGraw Hill, 2001”.
[18] Y. Hidaka, W. Gai, et al, “A 4-channel 1.25-10.3 Gb/s backplane transceiver macro with 35 dB equalizer and sign-based zero-forcing adaptive control,” IEEE J. Solid-State Circuits, vol. 44, no. 12, pp. 3547-3559, Dec. 2009.
[19] S. Haykin, “Adaptive Filter Theory, Prentice-Hall,” 2004.
[20] 陳俊諺, “以逼零演算法實現無外部校正之單一自適應系統之5 Gbps全速率連續時間線性等化器與決策回授等化器,” 碩士論文, 國立中央大學, 2017.
[21] J. Im, D. Freitas, et al, “A 40-to-56 Gb/s PAM-4 Receiver with Ten-Tap Direct Decision-Feedback Equalization in 16-nm FinFET,” IEEE J. Solid-State Circuits, vol. 52, no. 12, pp. 3486-3502, Dec. 2017.
[22] O. Elhadidy and S. Palermo, “A 10 Gb/s 2-IIR-Tap DFE Receiver with 35 dB Loss Compensation in 65-nm CMOS ,” in Proc. Symp. VLSI Circuits (VLSIC), Jun. 2013, pp. C272–C273.
[23] K.-L. Jackie Wong, E.-H. Chen, and C.-K. Ken Yang, “Edge and Data Adaptive Equalization of Serial-Link Transceivers,” IEEE J. Solid-State Circuits, vol. 43, no. 9, pp. 2157-2169, Sep. 2008.
[24] Z.-H. Hong, Y.-C. Liu, and W.-Z. Chen, “A 3.12 pJ/bit, 19-27 Gbps Receiver with 2-Tap DFE Embedded Clock and Data Recovery,” IEEE J. Solid-State Circuits, vol. 50, no. 11, pp. 2625-2634, Nov. 2015.
[25] Shunbin Li, Yingtao Jiang, and Peng Liu, “An Adaptive PAM-4 Analog Equalizer with Boosting-State Detection in the Time Domain,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst, vol. 25, no. 10, pp. 2907-2916, Oct. 2017.
[26] 許馥淳, “應用在序列傳輸系統之10-Gbps離散時間適應性等化器,” 碩士論文, 國立交通大學, 2009.
[27] Keysight, “M8048A ISI Channels - Data Sheet”.
[28] C.-K. Seong, J. Rhim, and W.-Y. Choi, “A 10-Gb/s Adaptive Look-Ahead Decision Feedback Equalizer with an Eye-Opening Monitor,” IEEE Trans. Circuits Syst. II, Express Briefs, vol. 59, no. 4, pp. 209-213, Apr. 2012.
[29] Y. -H Kim, Y. -J Kim, T. -H Lee, and L. -S Kim, “A 11.5 Gb/s 1/4th baud-rate CTLE and two-tap DFE with boosted high frequency gain in 110-nm CMOS,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst, vol. 23, no. 3, pp. 588–592, Mar. 2015.
[30] Y. Frans, J. Shin, et al, “A 56-Gb/s PAM4 Wireline Transceiver Using a 32-Way Time-Interleaved SAR ADC in 16-nm FinFET,” IEEE J. Solid-State Circuits, vol. 52, no. 4, pp. 1101-1110, Apr. 2017.
[31] A. Roshan-Zamir, et al, “A 56-Gb/s PAM4 Receiver with Low-OverheadTechniques for Threshold and Edge-Based DFE FIR- and IIR-Tap Adaptation in 65-nm CMOS,” IEEE J. Solid-State Circuits, vol. 54, no. 3, pp. 672-684, Mar. 2019.
指導教授 鄭國興 審核日期 2019-8-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明