博碩士論文 106323039 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:48 、訪客IP:18.118.164.227
姓名 遲睿功(Jui-Kung Chih)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 利用網印方法製備全固態石墨烯複合電極於高能量密度之微型電容的研究
(The investigation of high energy density of the all screen printable solid-state microsupercapacitors integrated by graphene based hybrid electrodes)
相關論文
★ 利用化學氣相沉積法於規模化合成大面積石墨烯之研究★ 電化學輔助剝離於乾轉印大面積與超潔凈石墨烯之研究
★ 有效披覆黑磷烯的穩定性之研究★ Phosphorus and Nitrogen Dual-doped Graphene Oxide as Metal-free Catalyst for Hydrogen Evolution Reaction
★ 利用氟化自組裝膜增強石墨烯與二硫化鉬的電傳輸特性之研究★ 批量繞捲方法於化學氣相沉積法合成大面積單層與多層石墨烯之研究
★ 石墨烯之複合電極於全固態纖維式微型超電容的研究★ 利用改良液相剝離法提高銻烯合成產率與均質性之研究
★ 石墨烯的霍爾效應感測器應用於快速且無標記DNA之研究★ 利用低損傷電漿改質於提升二硫化鉬電晶體之電傳輸特性
★ 石墨烯場效應電晶體應用於鼻咽癌循環腫瘤細胞生醫感測晶片之研究★ 化學氣相沉積法合成二硫化鉬於矽基材料之可控性及變異性研究
★ 使用低損傷電漿改質於提升二維通道電晶體電傳輸特性★ 利用電化學剝離石墨烯之三維多孔隙電極於製作可撓式超級電容
★ 懸空石墨烯之特性研究與應用★ 結合分子臨場吸附與電化學剝離法製備高品質石墨烯
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 微型超級電容器(micro-supercapacitors,MSCs)由於其體積小、重量輕、極高的充電放電速率和功率密度以及高彎折性,被視為一種微型儲能元件的選擇,以滿足可穿戴電子和高密度整合晶片上日益增長的需求。然而,現今MSCs的所面臨的關鍵挑戰是低能量密度的限制及其複雜、高成本且耗時的製作過程。
本研究展示一種全網版印刷式的微電容製作方法,通過電化學剝離石墨烯和長單壁碳納米管之複合電極,製造全固態(包括電解質)的軟性微電容。其中該方法顯示了一種簡單、快速且可大面積量產的途徑,以用於製造和組裝具有成本效益和高產量的微電容器。
實驗結果顯示本實驗之微電容裝置具有高的單位面積電容7.7 mF/cm2與單位體積電容77.3 F / cm3,並且在15000次循環後仍保持> 99%的優異循環穩定性,這歸因於石墨烯與奈米碳管之複合電極所提供的高擴散路徑和促進離子傳輸能力。在能量和功率密度分別為10.7 mWh / cm3和3.17 W / cm3。此外,當彎曲程度達到0.5mm的曲率半徑時,電容幾乎無劣化,顯示優異的機械柔韌性和工作穩定性。
此外,整體元件的總電荷儲存量可以透過活性材料的垂直疊層的方式來作擴充,而輸出電壓和電流則可以通過串聯和並聯多個MSC元件的設計來提升,以滿足各種應用上的所需。最重要的是,這項工作提供了一種具擴展性且經濟效益的方法來生產高能量密度的固態可撓式微電容,為未來的可穿戴設備開展新的方向。
摘要(英) Microsupercapacitors (MSCs) is an alternative power source that promises to fulfill the increasing demand for wearable and on-chip electronics due to the small, lightweight, extremely high charge/discharge rate and power density, as well as high flexibility. However, the critical challenge of nowadays MSCs is the limitation of low energy density and their complicated process with the high cost and time-consuming. Here, we reported an all-screen-printable method for fabricating all solid (including electrolyte) and flexible MSCs by rational designed composite electrodes of electrochemical exfoliated graphene (ECG) and long single-walled carbon nanotubes (CNTs), where the method shows features of a facile and scalable route to fabricate and assemble MSCs with cost-effectiveness and high throughput.
As a result, the resulting MSCs device exhibits an areal capacitance of 7.7 mF/cm2 and volumetric capacitance of 77.3 F/cm3, and excellent cyclic stability of >99 % after 15000 cycles, which was due to the creation of high diffusion path and the promotion of ion transport capability. The cell exhibits energy and power densities of 10.7 mWh/cm3 and 3.17 W/cm3, respectively. Moreover, there was negligible degradation on capacitance when suffering the bending deformation with radius reduce to 0.5 mm, indicating excellent mechanical flexibility and operation stability. In addition, the output voltage and current can be rationally designed by multiple connections of MSCs devices in series and parallel to fulfill the demanded applications. This work provides a scalable and cost-effective method to produce solid-state MSCs with high energy density, which paves the way for potential wearable devices.
關鍵字(中) ★ 微型超級電容器
★ 石墨烯
★ 網印
關鍵字(英) ★ microsupercapacitors
★ graphene
★ screen printing
論文目次 摘要 i
Abstract ii
總目錄 iv
圖目錄 vii
表目錄 xi
公式目錄 xii
第一章 緒論 1
1-1 前言 1
1-2 電容器介紹 2
第二章 研究背景與文獻回顧 4
2-1 微型超級電容器介紹 4
2-2 微型超級電容器之儲能機制 5
2-2-1 電雙層電容器 5
2-2-2 擬電容器 8
2-2-3 混合電容器 9
2-3 微型超級電容器之材料 10
2-3-1 碳材料(Carbon based material) 10
2-3-2 金屬氧化物(Metal oxide) 10
2-3-3 導電高分子(Conducting polymer) 10
2-4 電解液介紹 12
2-5 微電容器製造方式介紹 14
2-5-1 微影 (Photolithography) 14
2-5-2 遮罩輔助圖案化 (mask patterning) 17
2-5-3 雷射掃描與雷射蝕刻 (laser scribing/etching) 19
2-5-4 噴墨印刷 (ink-jet printing) 20
2-6 研究動機 22
第三章 實驗方法與分析原理 24
3-1 實驗用品與儀器 24
3-1-1 實驗用品 24
3-1-2 實驗儀器 24
3-2 實驗架構 26
3-3 實驗流程 28
3-3-1 電化學剝離石墨烯製備 28
3-3-2 石墨烯導電漿料配置 28
3-3-3 電解液製備 29
3-3-4 指叉結構設計 29
3-3-5 微電容印刷 31
3-3-6 三極式試片製作 32
3-4 材料分析 33
3-4-1 光學顯微鏡 (Optical Microscopes, OM) 33
3-4-2 掃描式電子顯微鏡 (Scanning Electron Microscope, SEM) 33
3-4-3 穿透式電子顯微鏡 (Transmission Electron Microscope,TEM) 33
3-4-4 探針式輪廓儀 (profiler) 34
3-4-5 黏度計 (Viscometer) 34
3-4-6 四點探針量測儀 (Four Point Probe) 34
3-4-7 X光光電子能譜儀 (X-ray Photoelectron Spectroscopy,XPS) 35
3-4-8 比表面積與孔隙分佈分析儀 (Specific Surface Area & Pore Size Distribution Analyzer by Gas Adsorption Method,ASPS) 35
3-4-9 拉曼光譜分析 (Raman Spectroscopy) 35
3-5 電化學分析 37
3-5-1 循環伏安法分析 (Cyclic Voltammetry,CV) 37
3-5-2 計時電位法分析 (Chronopotentiometry,CP) 37
3-5-3 交流阻抗分析 (Electrochemical Impedance Spectroscopy,EIS) 38
第四章 結果與討論 43
4-1 石墨烯漿料之優化 (The optimized study of graphene ink) 43
4-1-1 不同漿料濃度對微電容器特性分析 43
4-1-2添加奈米碳管對ECG電極之影響 49
4-2 調整指叉結構組態 (The optimized study of pattern geometry) 66
4-2-1 指叉寬度對MSCs影響之探討 66
4-2-2 指叉間距對微電容元件之影響 75
4-2-3 微電容元件的穩定性與耐久度測試 80
4-3 輔助電極對微電容器之優化 (Modified the MSCs with additional current collector) 83
4-3-1 形貌與材料分析 83
4-3-2 循環伏安法分析 85
4-3-3 計時電位法分析 88
4-3-4 交流阻抗分析 89
4-4 電解液濃度對微電容的影響 (The influence of electrolyte concentration) 90
4-4-1 循環伏安法分析 91
4-4-2 交流阻抗分析 97
4-4-3 計時電位法分析 98
4-5微電容的整合與應用 (Vertical and in-plane integration of MSCs device) 100
4-5-1垂直疊層對電容效能的影響 100
4-5-2微電容之平面整合 103
4-5-3應用測試 105
4-6各微型電容器之比較 (Compare with previous works) 106
第五章 結論 114
第六章 未來工作 115
6-1 電解液塗佈方式的優化 115
6-2 電極材料導電性的提升 117
6-2-1 循環伏安法分析 117
6-2-2 交流阻抗分析 119
6-3電極材料離子傳輸效能的提升 120
參考文獻 121
參考文獻 1. R. Kötz and M. Carlen, Electrochimica Acta, 2000, 45, 2483-2498.
2. D. Qi, Y. Liu, Z. Liu, L. Zhang and X. Chen, Advanced Materials, 2017, 29, 1602802.
3. P. Simon and Y. Gogotsi, Nature Materials, 2008, 7, 845.
4. F. Gao, M. T. Wolfer and C. E. Nebel, Carbon, 2014, 80, 833-840.
5. D. Aradilla, P. Gentile, G. Bidan, V. Ruiz, P. Gómez-Romero, T. J. S. Schubert, H. Sahin, E. Frackowiak and S. Sadki, Nano Energy, 2014, 9, 273-281.
6. W. Sun and X. Y. Chen, Journal of Power Sources, 2009, 193, 924-929.
7. Z. Cai, L. Li, J. Ren, L. Qiu, H. Lin and H. Peng, Journal of Materials Chemistry A, 2013, 1, 258-261.
8. F. Wang, X. Zhan, Z. Cheng, Q. Wang, Z. Wang, F. Wang, K. Xu, Y. Huang, M. Safdar and J. He, Advanced Electronic Materials, 2015, 1, 1400053.
9. D. Yu, K. Goh, H. Wang, L. Wei, W. Jiang, Q. Zhang, L. Dai and Y. Chen, Nature Nanotechnology, 2014, 9, 555.
10. G. P. Xiong, C. Z. Meng, R. G. Reifenberger, P. P. Irazoqui and T. S. Fisher, Energy Technol-Ger, 2014, 2, 897-905.
11. Q. Jiang, N. Kurra and H. N. Alshareef, Advanced Functional Materials, 2015, 25, 4976-4984.
12. W. W. Liu, Y. Q. Feng, X. B. Yan, J. T. Chen and Q. J. Xue, Advanced Functional Materials, 2013, 23, 4111-4122.
13. Z. Niu, L. Zhang, L. Liu, B. Zhu, H. Dong and X. Chen, Advanced Materials, 2013, 25, 4035-4042.
14. Z.-S. Wu, X. Feng and H.-M. Cheng, National Science Review, 2013, 1, 277-292.
15. X. Peng, L. Peng, C. Wu and Y. Xie, Chemical Society Reviews, 2014, 43, 3303-3323.
16. A. K. Samantara and S. Ratha, Materials Development for Active/Passive Components of a Supercapacitor: Background, Present Status and Future Perspective, Springer, 2017.
17. H. Helmholtz, Annalen der Physik, 1879, 243, 337-382.
18. D. L. Chapman, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1913, 25, 475-481.
19. O. Stern, Zeitschrift für Elektrochemie und angewandte physikalische Chemie, 1924, 30, 508-516.
20. L. L. Zhang and X. S. Zhao, Chemical Society Reviews, 2009, 38, 2520-2531.
21. B. E. Conway, Electrochemical supercapacitors: scientific fundamentals and technological applications, Springer Science & Business Media, 2013.
22. V. Augustyn, P. Simon and B. Dunn, Energy & Environmental Science, 2014, 7, 1597-1614.
23. E. Herrero, L. J. Buller and H. D. Abruña, Chemical Reviews, 2001, 101, 1897-1930.
24. N. Choudhary, C. Li, J. Moore, N. Nagaiah, L. Zhai, Y. Jung and J. Thomas, Advanced Materials, 2017, 29, 1605336.
25. M. Vangari, T. Pryor and L. Jiang, Journal of Energy Engineering, 2013, 139, 72-79.
26. Y. C. Yu, S. T. Wang, D. L. Ma, P. Joshi and A. M. Hu, Jom, 2018, 70, 1816-1822.
27. J. B. In, B. Hsia, J.-H. Yoo, S. Hyun, C. Carraro, R. Maboudian and C. P. Grigoropoulos, Carbon, 2015, 83, 144-151.
28. D. Pech, M. Brunet, P.-L. Taberna, P. Simon, N. Fabre, F. Mesnilgrente, V. Conédéra and H. Durou, Journal of Power Sources, 2010, 195, 1266-1269.
29. W. Yu, B. Q. Li, S. Ding and H. Liu, Journal of Micromechanics and Microengineering, 2018, 28.
30. H. Xiao, Z.-S. Wu, L. Chen, F. Zhou, S. Zheng, W. Ren, H.-M. Cheng and X. Bao, ACS Nano, 2017, 11, 7284-7292.
31. J. Chmiola, C. Largeot, P.-L. Taberna, P. Simon and Y. Gogotsi, Science, 2010, 328, 480-483.
32. L. Peng, S. Wenhui, L. Wenxian, C. Yafei, X. Xilian, Y. Shaofeng, Y. Ruilian, Z. Lin, X. Lixin and C. Xiehong, Nanotechnology, 2018, 29, 445401.
33. S. Wang, Z. S. Wu, S. Zheng, F. Zhou, C. Sun, H. M. Cheng and X. Bao, ACS Nano, 2017, 11, 4283-4291.
34. X. Feng, J. Ning, D. Wang, J. Zhang, J. Dong, C. Zhang, X. Shen and Y. Hao, Journal of Power Sources, 2019, 418, 130-137.
35. W. Ye, S. Yumeng, Z. Cheng Xi, W. Jen It, S. Xiao Wei and Y. Hui Ying, Nanotechnology, 2014, 25, 094010.
36. W. Liu, C. Lu, X. Wang, R. Y. Tay and B. K. Tay, ACS Nano, 2015, 9, 1528-1542.
37. Y. Wang, Y.-Z. Zhang, D. Dubbink and J. E. ten Elshof, Nano Energy, 2018, 49, 481-488.
38. G. Lee, D. Kim, J. Yun, Y. Ko, J. Cho and J. S. Ha, Nanoscale, 2014, 6, 9655-9664.
39. Y. G. Zhu, Y. Wang, Y. Shi, J. I. Wong and H. Y. Yang, Nano Energy, 2014, 3, 46-54.
40. S. Makino, Y. Yamauchi and W. Sugimoto, Journal of Power Sources, 2013, 227, 153-160.
41. C.-C. Liu, D.-S. Tsai, D. Susanti, W.-C. Yeh, Y.-S. Huang and F.-J. Liu, Electrochimica Acta, 2010, 55, 5768-5774.
42. Z. Qi, H. Lei, C. Quanhong, S. Wangzhou, S. Leo and C. Qi, Nanotechnology, 2016, 27, 105401.
43. L. Cao, S. Yang, W. Gao, Z. Liu, Y. Gong, L. Ma, G. Shi, S. Lei, Y. Zhang, S. Zhang, R. Vajtai and P. M. Ajayan, Small, 2013, 9, 2905-2910.
44. Y. X. Xiao, L. Huang, Q. Zhang, S. H. Xu, Q. Chen and W. Z. Shi, Applied Physics Letters, 2015, 107, 013906.
45. P. Zhang, F. Zhu, F. Wang, J. Wang, R. Dong, X. Zhuang, O. G. Schmidt and X. Feng, Adv Mater, 2017, 29, 1604491.
46. K. Wang, W. Zou, B. Quan, A. Yu, H. Wu, P. Jiang and Z. Wei, Advanced Energy Materials, 2011, 1, 1068-1072.
47. H. Hu, K. Zhang, S. Li, S. Ji and C. Ye, Journal of Materials Chemistry A, 2014, 2, 20916-20922.
48. C. Meng, J. Maeng, S. W. M. John and P. P. Irazoqui, Advanced Energy Materials, 2014, 4, 1301269.
49. N. Kurra, Q. Jiang and H. N. Alshareef, Nano Energy, 2015, 16, 1-9.
50. Z. S. Wu, K. Parvez, S. Li, S. Yang, Z. Y. Liu, S. H. Liu, X. L. Feng and K. Muellen, Advanced Materials, 2015, 27, 4054-4061.
51. Y. Zhang, T. Ji, S. Hou, L. Zhang, Y. Shi, J. Zhao and X. Xu, Journal of Power Sources, 2018, 403, 109-117.
52. L. Liu, Q. Lu, S. L. Yang, J. Guo, Q. Y. Tian, W. J. Yao, Z. H. Guo, V. A. L. Roy and W. Wu, Advanced Materials Technologies, 2018, 3, 1700206.
53. W. Sun and X. Chen, Microelectronic Engineering, 2009, 86, 1307-1310.
54. Y. Liu, B. Weng, Q. Xu, Y. Hou, C. Zhao, S. Beirne, K. Shu, R. Jalili, G. G. Wallace, J. M. Razal and J. Chen, Advanced Materials Technologies, 2016, 1, 1600166.
55. N. Kurra, M. K. Hota and H. N. Alshareef, Nano Energy, 2015, 13, 500-508.
56. L. L. Zhang, R. Zhou and X. S. Zhao, Journal of Materials Chemistry, 2010, 20, 5983-5992.
57. D. X. He, A. J. Marsden, Z. L. Li, R. Zhao, W. D. Xue and M. A. Bissett, Journal of the Electrochemical Society, 2018, 165, A3481-A3486.
58. Y. Dong, L. Wang, L. Ban, W. Du, X. J. Feng, P. Chen, F. Xiao, S. Wang and B. F. Liu, Journal of Power Sources, 2018, 396, 632-638.
59. C. Zhong, Y. Deng, W. Hu, J. Qiao, L. Zhang and J. Zhang, Chemical Society Reviews, 2015, 44, 7484-7539.
60. M. Beidaghi and C. Wang, Advanced Functional Materials, 2012, 22, 4501-4510.
61. W. Si, C. Yan, Y. Chen, S. Oswald, L. Han and O. G. Schmidt, Energy & Environmental Science, 2013, 6, 3218-3223.
62. M. S. Kim, B. Hsia, C. Carraro and R. Maboudian, Carbon, 2014, 74, 163-169.
63. J. Lin, C. Zhang, Z. Yan, Y. Zhu, Z. Peng, R. H. Hauge, D. Natelson and J. M. Tour, Nano Letters, 2013, 13, 72-78.
64. Z.-S. Wu, K. Parvez, X. Feng and K. Müllen, Journal of Materials Chemistry A, 2014, 2, 8288-8293.
65. S.-K. Kim, H.-J. Koo, A. Lee and P. V. Braun, Advanced Materials, 2014, 26, 5108-5112.
66. H. Durou, D. Pech, D. Colin, P. Simon, P.-L. Taberna and M. Brunet, Microsystem Technologies, 2012, 18, 467-473.
67. Z.-S. Wu, K. Parvez, A. Winter, H. Vieker, X. Liu, S. Han, A. Turchanin, X. Feng and K. Müllen, Advanced Materials, 2014, 26, 4552-4558.
68. W. Gao, N. Singh, L. Song, Z. Liu, A. L. M. Reddy, L. Ci, R. Vajtai, Q. Zhang, B. Wei and P. M. Ajayan, Nature Nanotechnology, 2011, 6, 496.
69. M. F. El-Kady, V. Strong, S. Dubin and R. B. Kaner, Science, 2012, 335, 1326-1330.
70. M. F. El-Kady and R. B. Kaner, Nat. Commun., 2013, 4, 1475.
71. F. Wen, C. Hao, J. Xiang, L. Wang, H. Hou, Z. Su, W. Hu and Z. Liu, Carbon, 2014, 75, 236-243.
72. M. F. El-Kady, M. Ihns, M. Li, J. Y. Hwang, M. F. Mousavi, L. Chaney, A. T. Lech and R. B. Kaner, Proceedings of the National Academy of Sciences, 2015, 112, 4233.
73. Z. Peng, R. Ye, J. A. Mann, D. Zakhidov, Y. Li, P. R. Smalley, J. Lin and J. M. Tour, ACS Nano, 2015, 9, 5868-5875.
74. Z. Wei, D. Wang, S. Kim, S.-Y. Kim, Y. Hu, M. K. Yakes, A. R. Laracuente, Z. Dai, S. R. Marder, C. Berger, W. P. King, W. A. de Heer, P. E. Sheehan and E. Riedo, Science, 2010, 328, 1373.
75. L. Li, E. B. Secor, K.-S. Chen, J. Zhu, X. Liu, T. Z. Gao, J.-W. T. Seo, Y. Zhao and M. C. Hersam, Advanced Energy Materials, 2016, 6, 1600909.
76. J. Li, S. Sollami Delekta, P. Zhang, S. Yang, M. R. Lohe, X. Zhuang, X. Feng and M. Ostling, ACS Nano, 2017, 11, 8249-8256.
77. Y. Xiao, L. Huang, Q. Zhang, S. Xu, Q. Chen and W. Shi, Applied Physics Letters, 2015, 107, 013906.
78. Q. Chang, L. Li, L. Sai, W. Shi and L. Huang, Advanced electronic Materials, 2018, 4, 1800059.
79. Q. Lu, L. Liu, S. Yang, J. Liu, Q. Tian, W. Yao, Q. Xue, M. Li and W. Wu, Journal of Power Sources, 2017, 361, 31-38.
80. X. Shi, S. Pei, F. Zhou, W. Ren, H.-M. Cheng, Z.-S. Wu and X. Bao, Energy & Environmental Science, 2019, DOI: 10.1039/c8ee02924e.
81. C.-H. Chen, S.-W. Yang, M.-C. Chuang, W.-Y. Woon and C.-Y. Su, Nanoscale, 2015, 7, 15362-15373.
82. Q. Chen, X. Li, X. Zang, Y. Cao, Y. He, P. Li, K. Wang, J. Wei, D. Wu and H. Zhu, RSC Advances, 2014, 4, 36253-36256.
83. J. Chen, K. Sheng, P. Luo, C. Li and G. Shi, Advanced Materials, 2012, 24, 4569-4573.
84. J. I. Goldstein, D. E. Newbury, J. R. Michael, N. W. Ritchie, J. H. J. Scott and D. C. Joy, Scanning electron microscopy and X-ray microanalysis, Springer, 2017.
85. S. Hofmann, Auger-and X-ray photoelectron spectroscopy in materials science: a user-oriented guide, Springer Science & Business Media, 2012.
86. N. P. Sari, D. Dutta, A. Jamaluddin, J.-K. Chang and C.-Y. Su, Physical Chemistry Chemical Physics, 2017, 19, 30381-30392.
87. S. Lin, Y. Zhong, X. Zhao, T. Sawada, X. Li, W. Lei, M. Wang, T. Serizawa and H. Zhu, Advanced Materials, 2018, 30, 1803004.
88. Y. Bai, M. Du, J. Chang, J. Sun and L. Gao, Journal of Materials Chemistry A, 2014, 2, 3834-3840.
89. C. Yang, J. Shen, C. Wang, H. Fei, H. Bao and G. Wang, Journal of Materials Chemistry A, 2014, 2, 1458-1464.
90. S. H. Aboutalebi, A. T. Chidembo, M. Salari, K. Konstantinov, D. Wexler, H. K. Liu and S. X. Dou, Energy & Environmental Science, 2011, 4, 1855-1865.
91. C. Liu, Z. Yu, D. Neff, A. Zhamu and B. Z. Jang, Nano Lett, 2010, 10, 4863-4868.
92. A. Jorio, M. A. Pimenta, A. G. S. Filho, R. Saito, G. Dresselhaus and M. S. Dresselhaus, New Journal of Physics, 2003, 5, 139-139.
93. J.-P. Tetienne, N. Dontschuk, D. A. Broadway, A. Stacey, D. A. Simpson and L. C. L. Hollenberg, Science Advances, 2017, 3, e1602429.
94. Q. Cheng, J. Tang, J. Ma, H. Zhang, N. Shinya and L.-C. Qin, Physical Chemistry Chemical Physics, 2011, 13, 17615-17624.
95. S. Wang, N. Liu, C. Yang, W. Liu, J. Su, L. Li, C. Yang and Y. Gao, RSC Advances, 2015, 5, 85799-85805.
96. S. Liu, J. Xie, H. Li, Y. Wang, H. Y. Yang, T. Zhu, S. Zhang, G. Cao and X. Zhao, Journal of Materials Chemistry A, 2014, 2, 18125-18131.
97. D. Qu and H. Shi, Journal of Power Sources, 1998, 74, 99-107.
98. H. Shi, Electrochimica Acta, 1996, 41, 1633-1639.
99. J. Gamby, P. L. Taberna, P. Simon, J. F. Fauvarque and M. Chesneau, Journal of Power Sources, 2001, 101, 109-116.
100. D. Qu, Studies of the activated carbons used in double-layer supercapacitors, 2002.
101. Y. J. Kim, Y. Horie, S. Ozaki, Y. Matsuzawa, H. Suezaki, C. Kim, N. Miyashita and M. Endo, Carbon, 2004, 42, 1491-1500.
102. K. Izutsu, Electrochemistry in nonaqueous solutions, John Wiley & Sons, 2009.
103. J. Huang, B. G. Sumpter and V. Meunier, Angewandte Chemie International Edition, 2008, 47, 520-524.
104. J. Huang, B. G. Sumpter and V. Meunier, Chemistry – A European Journal, 2008, 14, 6614-6626.
105. Z. S. Wu, K. Parvez, X. L. Feng and K. Mullen, Nat. Commun., 2013, 4, 2487.
106. P. Zhang, F. Zhu, F. Wang, J. Wang, R. Dong, X. Zhuang, O. G. Schmidt and X. Feng, Adv Mater, 2017, 29, 1604491.
107. Y. Wang, Y. Shi, C. X. Zhao, J. I. Wong, X. W. Sun and H. Y. Yang, Nanotechnology, 2014, 25, 094010.
108. S. Wang, Z.-S. Wu, S. Zheng, F. Zhou, C. Sun, H.-M. Cheng and X. Bao, ACS Nano, 2017, 11, 4283-4291.
指導教授 蘇清源(Ching-Yuan Su) 審核日期 2019-6-4
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明