參考文獻 |
1. R. Kötz and M. Carlen, Electrochimica Acta, 2000, 45, 2483-2498.
2. D. Qi, Y. Liu, Z. Liu, L. Zhang and X. Chen, Advanced Materials, 2017, 29, 1602802.
3. P. Simon and Y. Gogotsi, Nature Materials, 2008, 7, 845.
4. F. Gao, M. T. Wolfer and C. E. Nebel, Carbon, 2014, 80, 833-840.
5. D. Aradilla, P. Gentile, G. Bidan, V. Ruiz, P. Gómez-Romero, T. J. S. Schubert, H. Sahin, E. Frackowiak and S. Sadki, Nano Energy, 2014, 9, 273-281.
6. W. Sun and X. Y. Chen, Journal of Power Sources, 2009, 193, 924-929.
7. Z. Cai, L. Li, J. Ren, L. Qiu, H. Lin and H. Peng, Journal of Materials Chemistry A, 2013, 1, 258-261.
8. F. Wang, X. Zhan, Z. Cheng, Q. Wang, Z. Wang, F. Wang, K. Xu, Y. Huang, M. Safdar and J. He, Advanced Electronic Materials, 2015, 1, 1400053.
9. D. Yu, K. Goh, H. Wang, L. Wei, W. Jiang, Q. Zhang, L. Dai and Y. Chen, Nature Nanotechnology, 2014, 9, 555.
10. G. P. Xiong, C. Z. Meng, R. G. Reifenberger, P. P. Irazoqui and T. S. Fisher, Energy Technol-Ger, 2014, 2, 897-905.
11. Q. Jiang, N. Kurra and H. N. Alshareef, Advanced Functional Materials, 2015, 25, 4976-4984.
12. W. W. Liu, Y. Q. Feng, X. B. Yan, J. T. Chen and Q. J. Xue, Advanced Functional Materials, 2013, 23, 4111-4122.
13. Z. Niu, L. Zhang, L. Liu, B. Zhu, H. Dong and X. Chen, Advanced Materials, 2013, 25, 4035-4042.
14. Z.-S. Wu, X. Feng and H.-M. Cheng, National Science Review, 2013, 1, 277-292.
15. X. Peng, L. Peng, C. Wu and Y. Xie, Chemical Society Reviews, 2014, 43, 3303-3323.
16. A. K. Samantara and S. Ratha, Materials Development for Active/Passive Components of a Supercapacitor: Background, Present Status and Future Perspective, Springer, 2017.
17. H. Helmholtz, Annalen der Physik, 1879, 243, 337-382.
18. D. L. Chapman, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1913, 25, 475-481.
19. O. Stern, Zeitschrift für Elektrochemie und angewandte physikalische Chemie, 1924, 30, 508-516.
20. L. L. Zhang and X. S. Zhao, Chemical Society Reviews, 2009, 38, 2520-2531.
21. B. E. Conway, Electrochemical supercapacitors: scientific fundamentals and technological applications, Springer Science & Business Media, 2013.
22. V. Augustyn, P. Simon and B. Dunn, Energy & Environmental Science, 2014, 7, 1597-1614.
23. E. Herrero, L. J. Buller and H. D. Abruña, Chemical Reviews, 2001, 101, 1897-1930.
24. N. Choudhary, C. Li, J. Moore, N. Nagaiah, L. Zhai, Y. Jung and J. Thomas, Advanced Materials, 2017, 29, 1605336.
25. M. Vangari, T. Pryor and L. Jiang, Journal of Energy Engineering, 2013, 139, 72-79.
26. Y. C. Yu, S. T. Wang, D. L. Ma, P. Joshi and A. M. Hu, Jom, 2018, 70, 1816-1822.
27. J. B. In, B. Hsia, J.-H. Yoo, S. Hyun, C. Carraro, R. Maboudian and C. P. Grigoropoulos, Carbon, 2015, 83, 144-151.
28. D. Pech, M. Brunet, P.-L. Taberna, P. Simon, N. Fabre, F. Mesnilgrente, V. Conédéra and H. Durou, Journal of Power Sources, 2010, 195, 1266-1269.
29. W. Yu, B. Q. Li, S. Ding and H. Liu, Journal of Micromechanics and Microengineering, 2018, 28.
30. H. Xiao, Z.-S. Wu, L. Chen, F. Zhou, S. Zheng, W. Ren, H.-M. Cheng and X. Bao, ACS Nano, 2017, 11, 7284-7292.
31. J. Chmiola, C. Largeot, P.-L. Taberna, P. Simon and Y. Gogotsi, Science, 2010, 328, 480-483.
32. L. Peng, S. Wenhui, L. Wenxian, C. Yafei, X. Xilian, Y. Shaofeng, Y. Ruilian, Z. Lin, X. Lixin and C. Xiehong, Nanotechnology, 2018, 29, 445401.
33. S. Wang, Z. S. Wu, S. Zheng, F. Zhou, C. Sun, H. M. Cheng and X. Bao, ACS Nano, 2017, 11, 4283-4291.
34. X. Feng, J. Ning, D. Wang, J. Zhang, J. Dong, C. Zhang, X. Shen and Y. Hao, Journal of Power Sources, 2019, 418, 130-137.
35. W. Ye, S. Yumeng, Z. Cheng Xi, W. Jen It, S. Xiao Wei and Y. Hui Ying, Nanotechnology, 2014, 25, 094010.
36. W. Liu, C. Lu, X. Wang, R. Y. Tay and B. K. Tay, ACS Nano, 2015, 9, 1528-1542.
37. Y. Wang, Y.-Z. Zhang, D. Dubbink and J. E. ten Elshof, Nano Energy, 2018, 49, 481-488.
38. G. Lee, D. Kim, J. Yun, Y. Ko, J. Cho and J. S. Ha, Nanoscale, 2014, 6, 9655-9664.
39. Y. G. Zhu, Y. Wang, Y. Shi, J. I. Wong and H. Y. Yang, Nano Energy, 2014, 3, 46-54.
40. S. Makino, Y. Yamauchi and W. Sugimoto, Journal of Power Sources, 2013, 227, 153-160.
41. C.-C. Liu, D.-S. Tsai, D. Susanti, W.-C. Yeh, Y.-S. Huang and F.-J. Liu, Electrochimica Acta, 2010, 55, 5768-5774.
42. Z. Qi, H. Lei, C. Quanhong, S. Wangzhou, S. Leo and C. Qi, Nanotechnology, 2016, 27, 105401.
43. L. Cao, S. Yang, W. Gao, Z. Liu, Y. Gong, L. Ma, G. Shi, S. Lei, Y. Zhang, S. Zhang, R. Vajtai and P. M. Ajayan, Small, 2013, 9, 2905-2910.
44. Y. X. Xiao, L. Huang, Q. Zhang, S. H. Xu, Q. Chen and W. Z. Shi, Applied Physics Letters, 2015, 107, 013906.
45. P. Zhang, F. Zhu, F. Wang, J. Wang, R. Dong, X. Zhuang, O. G. Schmidt and X. Feng, Adv Mater, 2017, 29, 1604491.
46. K. Wang, W. Zou, B. Quan, A. Yu, H. Wu, P. Jiang and Z. Wei, Advanced Energy Materials, 2011, 1, 1068-1072.
47. H. Hu, K. Zhang, S. Li, S. Ji and C. Ye, Journal of Materials Chemistry A, 2014, 2, 20916-20922.
48. C. Meng, J. Maeng, S. W. M. John and P. P. Irazoqui, Advanced Energy Materials, 2014, 4, 1301269.
49. N. Kurra, Q. Jiang and H. N. Alshareef, Nano Energy, 2015, 16, 1-9.
50. Z. S. Wu, K. Parvez, S. Li, S. Yang, Z. Y. Liu, S. H. Liu, X. L. Feng and K. Muellen, Advanced Materials, 2015, 27, 4054-4061.
51. Y. Zhang, T. Ji, S. Hou, L. Zhang, Y. Shi, J. Zhao and X. Xu, Journal of Power Sources, 2018, 403, 109-117.
52. L. Liu, Q. Lu, S. L. Yang, J. Guo, Q. Y. Tian, W. J. Yao, Z. H. Guo, V. A. L. Roy and W. Wu, Advanced Materials Technologies, 2018, 3, 1700206.
53. W. Sun and X. Chen, Microelectronic Engineering, 2009, 86, 1307-1310.
54. Y. Liu, B. Weng, Q. Xu, Y. Hou, C. Zhao, S. Beirne, K. Shu, R. Jalili, G. G. Wallace, J. M. Razal and J. Chen, Advanced Materials Technologies, 2016, 1, 1600166.
55. N. Kurra, M. K. Hota and H. N. Alshareef, Nano Energy, 2015, 13, 500-508.
56. L. L. Zhang, R. Zhou and X. S. Zhao, Journal of Materials Chemistry, 2010, 20, 5983-5992.
57. D. X. He, A. J. Marsden, Z. L. Li, R. Zhao, W. D. Xue and M. A. Bissett, Journal of the Electrochemical Society, 2018, 165, A3481-A3486.
58. Y. Dong, L. Wang, L. Ban, W. Du, X. J. Feng, P. Chen, F. Xiao, S. Wang and B. F. Liu, Journal of Power Sources, 2018, 396, 632-638.
59. C. Zhong, Y. Deng, W. Hu, J. Qiao, L. Zhang and J. Zhang, Chemical Society Reviews, 2015, 44, 7484-7539.
60. M. Beidaghi and C. Wang, Advanced Functional Materials, 2012, 22, 4501-4510.
61. W. Si, C. Yan, Y. Chen, S. Oswald, L. Han and O. G. Schmidt, Energy & Environmental Science, 2013, 6, 3218-3223.
62. M. S. Kim, B. Hsia, C. Carraro and R. Maboudian, Carbon, 2014, 74, 163-169.
63. J. Lin, C. Zhang, Z. Yan, Y. Zhu, Z. Peng, R. H. Hauge, D. Natelson and J. M. Tour, Nano Letters, 2013, 13, 72-78.
64. Z.-S. Wu, K. Parvez, X. Feng and K. Müllen, Journal of Materials Chemistry A, 2014, 2, 8288-8293.
65. S.-K. Kim, H.-J. Koo, A. Lee and P. V. Braun, Advanced Materials, 2014, 26, 5108-5112.
66. H. Durou, D. Pech, D. Colin, P. Simon, P.-L. Taberna and M. Brunet, Microsystem Technologies, 2012, 18, 467-473.
67. Z.-S. Wu, K. Parvez, A. Winter, H. Vieker, X. Liu, S. Han, A. Turchanin, X. Feng and K. Müllen, Advanced Materials, 2014, 26, 4552-4558.
68. W. Gao, N. Singh, L. Song, Z. Liu, A. L. M. Reddy, L. Ci, R. Vajtai, Q. Zhang, B. Wei and P. M. Ajayan, Nature Nanotechnology, 2011, 6, 496.
69. M. F. El-Kady, V. Strong, S. Dubin and R. B. Kaner, Science, 2012, 335, 1326-1330.
70. M. F. El-Kady and R. B. Kaner, Nat. Commun., 2013, 4, 1475.
71. F. Wen, C. Hao, J. Xiang, L. Wang, H. Hou, Z. Su, W. Hu and Z. Liu, Carbon, 2014, 75, 236-243.
72. M. F. El-Kady, M. Ihns, M. Li, J. Y. Hwang, M. F. Mousavi, L. Chaney, A. T. Lech and R. B. Kaner, Proceedings of the National Academy of Sciences, 2015, 112, 4233.
73. Z. Peng, R. Ye, J. A. Mann, D. Zakhidov, Y. Li, P. R. Smalley, J. Lin and J. M. Tour, ACS Nano, 2015, 9, 5868-5875.
74. Z. Wei, D. Wang, S. Kim, S.-Y. Kim, Y. Hu, M. K. Yakes, A. R. Laracuente, Z. Dai, S. R. Marder, C. Berger, W. P. King, W. A. de Heer, P. E. Sheehan and E. Riedo, Science, 2010, 328, 1373.
75. L. Li, E. B. Secor, K.-S. Chen, J. Zhu, X. Liu, T. Z. Gao, J.-W. T. Seo, Y. Zhao and M. C. Hersam, Advanced Energy Materials, 2016, 6, 1600909.
76. J. Li, S. Sollami Delekta, P. Zhang, S. Yang, M. R. Lohe, X. Zhuang, X. Feng and M. Ostling, ACS Nano, 2017, 11, 8249-8256.
77. Y. Xiao, L. Huang, Q. Zhang, S. Xu, Q. Chen and W. Shi, Applied Physics Letters, 2015, 107, 013906.
78. Q. Chang, L. Li, L. Sai, W. Shi and L. Huang, Advanced electronic Materials, 2018, 4, 1800059.
79. Q. Lu, L. Liu, S. Yang, J. Liu, Q. Tian, W. Yao, Q. Xue, M. Li and W. Wu, Journal of Power Sources, 2017, 361, 31-38.
80. X. Shi, S. Pei, F. Zhou, W. Ren, H.-M. Cheng, Z.-S. Wu and X. Bao, Energy & Environmental Science, 2019, DOI: 10.1039/c8ee02924e.
81. C.-H. Chen, S.-W. Yang, M.-C. Chuang, W.-Y. Woon and C.-Y. Su, Nanoscale, 2015, 7, 15362-15373.
82. Q. Chen, X. Li, X. Zang, Y. Cao, Y. He, P. Li, K. Wang, J. Wei, D. Wu and H. Zhu, RSC Advances, 2014, 4, 36253-36256.
83. J. Chen, K. Sheng, P. Luo, C. Li and G. Shi, Advanced Materials, 2012, 24, 4569-4573.
84. J. I. Goldstein, D. E. Newbury, J. R. Michael, N. W. Ritchie, J. H. J. Scott and D. C. Joy, Scanning electron microscopy and X-ray microanalysis, Springer, 2017.
85. S. Hofmann, Auger-and X-ray photoelectron spectroscopy in materials science: a user-oriented guide, Springer Science & Business Media, 2012.
86. N. P. Sari, D. Dutta, A. Jamaluddin, J.-K. Chang and C.-Y. Su, Physical Chemistry Chemical Physics, 2017, 19, 30381-30392.
87. S. Lin, Y. Zhong, X. Zhao, T. Sawada, X. Li, W. Lei, M. Wang, T. Serizawa and H. Zhu, Advanced Materials, 2018, 30, 1803004.
88. Y. Bai, M. Du, J. Chang, J. Sun and L. Gao, Journal of Materials Chemistry A, 2014, 2, 3834-3840.
89. C. Yang, J. Shen, C. Wang, H. Fei, H. Bao and G. Wang, Journal of Materials Chemistry A, 2014, 2, 1458-1464.
90. S. H. Aboutalebi, A. T. Chidembo, M. Salari, K. Konstantinov, D. Wexler, H. K. Liu and S. X. Dou, Energy & Environmental Science, 2011, 4, 1855-1865.
91. C. Liu, Z. Yu, D. Neff, A. Zhamu and B. Z. Jang, Nano Lett, 2010, 10, 4863-4868.
92. A. Jorio, M. A. Pimenta, A. G. S. Filho, R. Saito, G. Dresselhaus and M. S. Dresselhaus, New Journal of Physics, 2003, 5, 139-139.
93. J.-P. Tetienne, N. Dontschuk, D. A. Broadway, A. Stacey, D. A. Simpson and L. C. L. Hollenberg, Science Advances, 2017, 3, e1602429.
94. Q. Cheng, J. Tang, J. Ma, H. Zhang, N. Shinya and L.-C. Qin, Physical Chemistry Chemical Physics, 2011, 13, 17615-17624.
95. S. Wang, N. Liu, C. Yang, W. Liu, J. Su, L. Li, C. Yang and Y. Gao, RSC Advances, 2015, 5, 85799-85805.
96. S. Liu, J. Xie, H. Li, Y. Wang, H. Y. Yang, T. Zhu, S. Zhang, G. Cao and X. Zhao, Journal of Materials Chemistry A, 2014, 2, 18125-18131.
97. D. Qu and H. Shi, Journal of Power Sources, 1998, 74, 99-107.
98. H. Shi, Electrochimica Acta, 1996, 41, 1633-1639.
99. J. Gamby, P. L. Taberna, P. Simon, J. F. Fauvarque and M. Chesneau, Journal of Power Sources, 2001, 101, 109-116.
100. D. Qu, Studies of the activated carbons used in double-layer supercapacitors, 2002.
101. Y. J. Kim, Y. Horie, S. Ozaki, Y. Matsuzawa, H. Suezaki, C. Kim, N. Miyashita and M. Endo, Carbon, 2004, 42, 1491-1500.
102. K. Izutsu, Electrochemistry in nonaqueous solutions, John Wiley & Sons, 2009.
103. J. Huang, B. G. Sumpter and V. Meunier, Angewandte Chemie International Edition, 2008, 47, 520-524.
104. J. Huang, B. G. Sumpter and V. Meunier, Chemistry – A European Journal, 2008, 14, 6614-6626.
105. Z. S. Wu, K. Parvez, X. L. Feng and K. Mullen, Nat. Commun., 2013, 4, 2487.
106. P. Zhang, F. Zhu, F. Wang, J. Wang, R. Dong, X. Zhuang, O. G. Schmidt and X. Feng, Adv Mater, 2017, 29, 1604491.
107. Y. Wang, Y. Shi, C. X. Zhao, J. I. Wong, X. W. Sun and H. Y. Yang, Nanotechnology, 2014, 25, 094010.
108. S. Wang, Z.-S. Wu, S. Zheng, F. Zhou, C. Sun, H.-M. Cheng and X. Bao, ACS Nano, 2017, 11, 4283-4291.
|