博碩士論文 106323029 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:132 、訪客IP:18.189.14.219
姓名 顧繼珩(Ji-Heng Ku)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 超載負荷及裂縫閉合對鈦合金電子束銲件疲勞裂縫成長之影響
相關論文
★ 三次元量床之虛擬儀器教學與訓練系統之設計與開發★ 駕駛模擬器技術開發及其在駕駛行為研究之應用
★ 電源模組老化因子與加速試驗模型之研究★ 應用駕駛模擬器探討語音防撞警示系統 對駕駛行為之影響
★ 遠距健康監測與復健系統之開發與研究★ 藥柱低週疲勞特性與壽限評估模式之研究
★ 非接觸式電子經緯儀電腦模擬教學系統之研究★ 適應性巡航控制系統對於駕駛績效影響之研究
★ 車輛零組件路況模擬系統之開發研究★ 應用殘障駕駛模擬器探討失衡路況對人體重心影響之研究
★ 聚縮醛(POM)機械性質之射出成型條件最佳化研究★ 駕駛模擬儀之開發驗證及應用於駕駛疲勞之研究
★ 即時眼部狀態偵測系統之研究★ 短玻璃纖維強化聚縮醛射出成型條件最佳化與機械性質之研究
★ 手推輪椅虛擬實境系統開發之研究★ 應用駕駛績效預測車輛碰撞風險之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究以Ti-6Al-4V鈦合金為實驗材料,分析超載負荷及裂縫閉合對疲勞裂縫成長之影響,並量測可用以準確評估疲勞裂縫成長壽命之材料參數。藉掃瞄式電子顯微鏡之觀察以瞭解材料的疲勞破壞機構。研究結果顯示,超載負荷造成裂縫成長速率下降,需要多次的週期數才能穿越塑性區並回到原始裂縫成長速率。超載負荷比愈大,裂縫成長延遲現象也愈明顯。在施加超載負荷的期間,裂縫前緣會產生新月形的損傷區域。Ti-6Al-4V鈦合金在Wheeler模式中的延遲形狀參數為3.3。在裂縫閉合方面,應力比或應力強度因子範圍愈力,則裂縫閉合應力愈高。在低應力比時,Ti-6Al-4V的裂縫閉合係數約為0.83,遠高於鋼鐵材料的0.5。亦即Ti-6Al-4V受到裂縫閉合的影響較小,若採用鋼鐵材料的裂縫閉合經驗參數值進行裂縫成長評估,會嚴重高估其疲勞裂縫成長壽命。本研究進一步得到裂縫閉合係數與應力比之關係式。
摘要(英) In this study, Ti-6Al-4V titanium alloy was used as experimental material to analyze the effects of overload load and crack closure on fatigue crack growth. The fatigue failure mechanism of materials was studied by scanning electron microscope. The results show that overload load reduces fatigue crack growth rate. It takes more load cycles to go through the plastic zone and return to the original crack growth rate. The larger the overload load ratio, the more obvious the crack growth retardation phenomenon. During the loading period, crescent-shaped areas of damage were produced at the crack front. The delay shape parameter of Ti-6Al-4V titanium alloy in Wheeler model is 3.3. In terms of crack closure, the greater the stress ratio or the stress intensity factor, the higher the crack closure stress. At low stress ratio, the crack closure coefficient of Ti-6Al-4V is about 0.83, which is much higher than 0.5 of steels. That is to say, Ti-6Al-4V is less affected by crack closure. If fatigue crack growth evaluation is carried out with the empirical crack closure coefficient of steels, the fatigue crack growth life will be apparently overestimated. Furthermore, the relationship between crack closure coefficient of Ti-6Al-4V and stress ratio was obtained.
關鍵字(中) ★ 鈦合金
★ 電子束銲接
★ 超載負荷
★ 疲勞裂縫成長
★ 裂縫閉合
關鍵字(英) ★ Titanium Alloy
★ Ti-6Al-4V
★ Electron Beam Welding
★ Overload
★ Fatigue Crack Growth
★ Crack Closure
論文目次 中文摘要 i
ABSTRACT ii
誌謝 iii
目錄 iv
圖目錄 vii
表目錄 x
符號說明 xi
第一章、前言 1
1.1 研究背景 1
1.1.1 電子束銲接原理及其特性 3
1.1.2 結構件疲勞設計之重要性及方法 4
1.2 研究動機與目的 8
1.3 文獻回顧 9
1.3.1 鈦合金介紹 9
1.3.2 鈦合金銲接之文獻回顧 10
第二章、理論說明 11
2.1 疲勞裂縫成長理論 11
2.1.1 線彈性破壞力學 (Linear Elastic Fracture Mechanics, LEFM) 11
2.1.2 Griffith脆性破裂理論 14
2.1.3 疲勞裂縫成長曲線 15
2.2 疲勞裂縫成長實驗規範 19
2.3 超載負荷 21
2.3.1 超載負荷理論 22
2.3.2 超載負荷機制 22
2.4疲勞裂縫閉合 23
2.4.1 裂縫閉合理論 23
2.4.2 裂縫閉合機制 24
2.5 預測修正模式 26
2.5.1 Wheeler 模式 26
2.5.2 Willenborg 模式 27
第三章、研究方法與步驟 30
3.1 研究規劃及流程 30
3.2鈦合金材料 30
3.3銲接方法 31
3.4試片加工 32
3.5疲勞裂縫長度量測方法 33
3.6 機械性質測試 35
3.6.1 拉伸性質測試 35
3.6.2 超載負荷疲勞裂縫成長實驗 36
3.6.3 超載負荷量測 37
3.6.4 裂縫閉合實驗 38
3.6.5 裂縫閉合量測 39
3.7破斷面觀察 41
第四章、結果與討論 43
4.1 拉伸性質 43
4.2 疲勞裂縫成長速率 44
4.3 超載負荷之塑性區尺寸分析 47
4.4 超載負荷對疲勞裂縫成長之影響 50
4.5 疲勞裂縫閉合 56
4.6 破斷面分析 67
第五章、結論 75
第六章、未來研究方向 76
參考文獻 77
參考文獻 [1] 曾婉如,“鈦金屬市場現況與應用商機“,中工高雄會刊,第21卷,第1期。
[2] 洪祖昌,“從電子束焊接談技術引進與研究發展”,機械工業,66-71頁,1985。
[3] G. LaFlamme and J. Knoefel, “Application of electron beam welding,” International Conference on Power Beam Technology, Brighton, 10-12 September, Abington, Cambridge, pp. 59-74,1986
[4] R. I. Stephens, A. Fatemi, R. R. Stephens, and H. O. Fuchs, “Metal Fatigue in Engineering,” John Wiley & Sons, New York, 2nd ed., 2000.
[5] Fatigue design handbook, 2nd ed., Society of Automotive Engineers, Inc., 1988.
[6] P. C. Paris and F. Erdogan, “A critical analysis of crack propagation law,” Journal of Basic Engineering, Vol. D85, pp. 528-534, 1963.
[7] R. G. Forman, V. E. Kearney and R. M. Engle, “Numerical analysis of crack propagation in cyclic-loaded structures,” Journal of Basic Engineering, Vol. D89, No. 3, pp. 459-464, 1967.
[8] O. E. Wheeler, “Spectrum loadings and crack growth,” Journal of Basic Engineering, Vol. D94, No. 1, pp. 181-186, 1972.
[9] J. Willenborg, R. M. Engle, and H. A. Wood, “A crack growth retardation model using an effective stress concept,” AFFDL TM-71-1FBR, Jan. 1971.
[10] W. Elber, "Fatigue crack propagation," Ph. D. Thesis, University of New South Wales, Australia, 1968.
[11] J. C Newman, Jr., “A crack closure model for predicting fatigue crack growth under aircraft spectrum loading,” in Method and Model for Predicting Fatigue Crack Growth under Random Loading, ASTM STP 748, American Society for Testing and Materials, Philadelphia, pp. 53-84, 1981.
[12] I. M. Austen and E. F. Walker, “Corrosion fatigue crack growth rate information for offshore life prediction,” Steel in Marine Structure, C. Noordhoek and J. de Back, Ed., p. 859, 1987.
[13] “Structural Welding Code - Titanium” American National Standard AWS D 1.9, American Welding Society, 2007.
[14] 洪胤庭,“純鈦及鈦合金特性及製程介紹”,中工高雄會刊,第21卷,第1期,16-18頁。
[15] 朱建平、陳瑾惠、簡嘉毅,“鈦-鉬合金熱處理後拉伸疲勞性質研究”,碩士論文,國立成功大學材料科學及工程學系所,2005。
[16] 陸美源,“ Ti-6Al-4V與Ti-15V-3Cr-3Al-3Sn 銲件之高溫缺口拉伸性質研究”,國立台灣海洋大學,碩士論文,2011。
[17] 賴耿陽,“金屬鈦(理論與應用) ”,台南:復漢出版社,50-56頁,2000
[18] 丁逸勳,”Ti-6Al-4V、SP700銲件機械性質特性”,碩士論文,國立台灣海洋大學材料工程所,2006。
[19] 丁逸勳,”環境效應對雙相α+β鈦合金雷射銲件之疲勞裂縫成長行為”,博士論文,國立台灣海洋大學材料工程所,2011。
[20] 張世宗,”Ti-15V-3Cr-3Sn-3Al缺口拉伸性質及疲勞裂縫成長行為”,碩士論文,國立台灣海洋大學材料工程所,2012。
[21] H. U. Qi, ”Fatigue crack growth of titanium alloy joints by electron beam welding,” Rare Metals, pp. 1-6, 2013.
[22] L. B. Ji, ”Morphologies at fatigue crack tip of Ti-6Al-4V electron beam welding joints,” Zhongguo Youse Jinshu Xuebao/Chinese Journal of Nonferrous Metals, Vol. 21, No. 1, pp. 102-109, 2011.
[23] T. S. Balasubramanian, ”Fatigue performance of gas tungsten arc, electron beam, and laser beam welded Ti-6Al-4V alloy joints,” Journal of Materials Engineering and Performance, Vol. 20, No. 9, pp. 1620-1630, 2011.
[24] K. P. Rao, ”Fracture toughness of electron beam welded Ti-6Al-4V,” Journal of Materials Processing Technology, Vol. 199, No. 1, pp. 185-192, 2008.
[25] K. K. Murthy, ”Fracture toughness of Ti-6Al-4V after welding and post weld heat treatment ” Welding Journal, Vol. 76, No. 2, pp. 81s-91s, 1997.
[26] J. L. Barreda, ”Influence of the filler metal on the mechanical properties of Ti-6Al-4V electron beam weldments,” Vacuum, Vol. 85, No. 1, pp. 10-15, 2010.
[27] A. Wohler, “Uber die Festigkeitversuche mit Eisen und Stahl,” Zeitschrift fur
Bauwesen, Vol. VIII, X, XIII, XVI, and XX, 1860/70, Englishaccount of this work is in Engineering, Vol. 11, 1871.
[28] A. A. Griffith, “The Phenomena of Rupture and Flow in Solids,” Phil. Trans. Roy. Soc. Of London, A221, pp.163-197.
[29] G. R. Irwin, "Fracture Dynamics Fracturing of Metals," American Society for Metals, Cleveland, OH, 1949, pp.147-166.
[30] H. L. Ewalds and R. J. H. Wanhill, Fracture Mechanics, First Published in 1984, p. 13.
[31] G. R. Irwin, “Analysis of Stresses and Strains Near The End of a Crack Traversing a Plate,” Journal of Applied Mechanics, Trans. of ASME, Vol. E24, 1957, pp.361-364.
[32] T. L. Anderson, “Fracture Mechanics: Fundamentals and Applications,” 3rd edition, CRC Press, 2005.
[33] R. I. Stephens, A. Fatemi, R. R. Stephens, H. O. Fuchs, “Metal Fatigue in Engineering,” 2nd edition, John Wiley & Sons, 2001, pp. 122-176.
[34] “Standard Test Method for Plane-Strain Fracture Toughness of Metallic Materials,” Annual Book of ASTM Standards, E 399-90.
[35] E. Zahavi, “Fatigue design: Life Expectancy of Machine Parts,” CRC Press. 1996.
[36] W. Elber, “Fatigue Crack Closure under Cyclic Tension,” Engineering Fracture Mechanics, Vol. 2, No. 1, 1970, pp. 37-45.
[37] W. Elber, “The Significance of Fatigue Crack Closure,” Damage Tolerance in Aircraft Structures, ASTM STP 486, 1971, pp. 230-242.
[38] “Standard Test Method for Measurement of Fatigue Crack Growth Rates,” ASTM E647-11.
[39] S. Suresh, Fatigue of Materials, Cambridge University Press, 1991, pp. 222-271.
[40] “Method of Vickers Hardness Test,” CNS 2115 Z8004,Chinese National Standards, Taiwan, 1983.
[41] 羅志明,”Ti-6Al-4V 鈦合金電子束銲件之疲勞裂縫成長研究”,碩士論 文,國立中央大學機械工程所,2018。
[42] “Standard Test Methods for Tension Testing of Metallic Materials,” ASTM E8,
American Society for Testing and Materials, United States of America, 2012.
[43] V. Sinha, ”An investigation of short and long fatigue crack growth behavior of Ti-6Al-4V,” Materials Science and Engineering: A, Vol. 287, Iss. 1, 2000, pp.30-42.
[44] S. Li, ”Effect of tensile overload on fatigue crack growth behavior in DP780 dual phase steel,” International Journal of Fatigue, Vol. 106, 2018, pp.49-55
指導教授 黃俊仁(Jiun-Ren Hwang) 審核日期 2019-7-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明