博碩士論文 106323038 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:22 、訪客IP:3.15.211.71
姓名 謝岳衡(Yueh-Heng Hsieh)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 鈦合金電子束銲件之疲勞裂縫成長壽命評估及破壞韌 性研究
相關論文
★ 三次元量床之虛擬儀器教學與訓練系統之設計與開發★ 駕駛模擬器技術開發及其在駕駛行為研究之應用
★ 電源模組老化因子與加速試驗模型之研究★ 應用駕駛模擬器探討語音防撞警示系統 對駕駛行為之影響
★ 遠距健康監測與復健系統之開發與研究★ 藥柱低週疲勞特性與壽限評估模式之研究
★ 非接觸式電子經緯儀電腦模擬教學系統之研究★ 適應性巡航控制系統對於駕駛績效影響之研究
★ 車輛零組件路況模擬系統之開發研究★ 應用殘障駕駛模擬器探討失衡路況對人體重心影響之研究
★ 聚縮醛(POM)機械性質之射出成型條件最佳化研究★ 駕駛模擬儀之開發驗證及應用於駕駛疲勞之研究
★ 即時眼部狀態偵測系統之研究★ 短玻璃纖維強化聚縮醛射出成型條件最佳化與機械性質之研究
★ 手推輪椅虛擬實境系統開發之研究★ 應用駕駛績效預測車輛碰撞風險之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究以Ti-6Al-4V鈦合金為實驗材料,採用自體銲接方式進行電子束銲接(EBW),檢視鈦合金銲件之銲道與母材在等負荷振幅及變動負荷振幅負載下之疲勞裂縫成長性質,利用破壞力學評估在變動負荷振幅負載下之疲勞壽命。再研究不同應力比下對於銲件疲勞裂縫成長的影響,最後探討此材料銲道與母材的破壞韌性。
研究結果顯示,銲道抵抗疲勞裂縫成長能力較母材佳,且在疲勞裂縫成長實驗中,可觀察到銲道在受到不同應力比時,其產生的影響較小。若在相同的變動振幅負載條件下,銲道壽命為母材的4倍。母材的破壞韌性JIC為66 N-mm/mm2,銲道為30 N-mm/mm2。綜觀本實驗所使用之各種修正模式下,靜態破壞修正模式對於預測疲勞裂縫成長壽命最為準確。
摘要(英) In this study, we chose Ti-6Al-4V titanium alloy processed by the implemented Electron Beam Welding (EBW) for the experiment. The objectives were as follows. (1) To obtain the materials properties such as fatigue crack growth rate and fracture toughness. (2) To understand the effects of stress ratio on the fatigue crack growth rate. (3) To establish the optimum method for predicting fatigue life of a cracked specimen.
The results showed that the anti-crack growth ability of weld bead was better than the base material. The fatigue crack growth rate of welding bead was less affected by the stress ratio. Under the same variable amplitude loading, the fatigue life of weld bead was about four times of base material. Fracture toughness JIC of base material and welding bead was 66 N-mm/mm2 and 30 N-mm/mm2, respectively. With respect to fatigue crack growth life prediction, the static fracture correction model was the most accurate one.
關鍵字(中) ★ 鈦合金
★ 電子束銲接
★ 疲勞裂縫成長
★ 應力比
★ 變動振幅負載
★ 破壞韌性
關鍵字(英) ★ Ti-6Al-4V
★ Electron Beam Welding
★ Fatigue Crack Growth
★ Stress Ratio
★ Variable Amplitude Loading
★ Fracture Toughness
論文目次 目錄
中文摘要 i
ABSTRACT ii
誌謝 iii
目錄 iv
圖目錄 vi
表目錄 x
符號說明 xi
第一章、前言 1
1.1 研究背景 1
1.1.1 電子束銲接原理及其特性 3
1.2 研究動機與目的 4
1.3 文獻回顧 5
1.3.1 鈦合金介紹 5
1.3.2 鈦合金銲接件破壞韌性之研究 6
1.3.3 銲接疲勞裂縫成長速率之文獻回顧 6
1.3.4 鈦合金在變動振幅負荷歷程下之疲勞行為研究 7
第二章、理論說明 8
2.1 疲勞裂縫成長理論 8
2.1.1 線彈性破壞力學 (Linear Elastic Fracture Mechanics, LEFM) 8
2.1.2 疲勞裂縫成長曲線 11
2.2 J積分 18
2.3 破壞韌性JIC實驗 20
2.4 疲勞裂縫成長實驗 22
第三章、研究方法與步驟 25
3.1 研究流程 25
3.2鈦合金材料 25
3.3銲接方法 26
3.4試片加工 27
3.5裂縫長度量測 30
3.6機械性質測試 32
3.6.1拉伸強度測試 32
3.6.2破壞韌性JIC測試 33
3.6.3等振幅負載疲勞裂縫成長測試 34
3.6.4變動振幅負載疲勞裂縫成長測試 34
3.6.5破斷面觀察分析 36
3.7疲勞壽命分析 37
第四章、結果與討論 46
4.1 拉伸性質 46
4.2破壞韌性JIC 47
4.3等振幅疲勞裂縫成長速率 50
4.4變動負荷振幅下之疲勞裂縫成長速率 56
4.5破斷面觀察 60
4.5.1巨觀破斷面分析 60
4.5.2微觀破斷面分析 66
4.6疲勞裂縫成長壽命評估分析 72
第五章、結論 80
第六章、未來研究方向 82
參考文獻 83
參考文獻 參考文獻
[1] 曾婉如,“鈦金屬市場現況與應用商機“,中工高雄會刊,第21卷,第1期。
[2] 洪祖昌,”從電子束焊接談技術引進與研究發展”,機械工業,66-71頁,1985。
[3] 高道鋼,“鈦銲接技術”,全華科技圖書出版,2-15頁,2001。
[4] G. LaFlamme, J. Knoefel, “Application of electron beam welding,” International Conference on Power Beam Technology, Brighton, 10-12 September, Abington, Cambridge, 1986, pp. 59-74.
[5] 洪胤庭,“純鈦及鈦合金特性及製程介紹”,中工高雄會刊,第21卷,第1期,16-18頁。
[6] 朱建平、陳瑾惠、簡嘉毅,鈦-鉬合金熱處理後拉伸疲勞性質研究,碩士論文,國立成功大學材料科學及工程學系所,2005。
[7] 陸美源,“ Ti-6Al-4V與Ti-15V-3Cr-3Al-3Sn 銲件之高溫缺口拉伸性質研究”,碩士論文,國立台灣海洋大學,2011。
[8] 賴耿陽,“金屬鈦(理論與應用) ”,台南:復漢出版社,50-56頁,2000。
[9] K. P. Rao, ”Fracture toughness of electron beam welded Ti-6Al-4V,” Journal of Materials Processing Technology, Vol. 199, No. 1, pp. 185-192, 2008.
[10] K. K. Murthy, ”Fracture toughness of Ti-6Al-4V after welding and post weld heat treatment ” Welding Journal, Vol. 76, No. 2, p 81s-91s, 1997.
[11] J. L. Barreda, ”Influence of the filler metal on the mechanical properties of Ti-6Al-4V electron beam weldments,” Vacuum, Vol. 85, No. 1, pp. 10-15, 2010.
[12] 林邵品,銲接製程對308L沃斯田不鏽鋼和道疲勞裂縫成長行為之影響,碩士論文,國立清華大學,2011。
[13] 陳香如,銲接製程對309L沃斯田鐵系不鏽鋼銲道之疲勞裂縫成長影響,碩士論文,國立清華大學,2012。
[14] 丁逸勳,”Ti-6Al-4V、SP700銲件機械性質特性”,碩士論文,台灣海洋大學材料工程所,2006。
[15] 丁逸勳,”環境效應對雙相 α + β 鈦合金雷射銲件之疲勞裂縫成長行為”,博士論文,台灣海洋大學材料工程所,2011。
[16] 張世宗,”Ti-15V-3Cr-3Sn-3Al缺口拉伸性質及疲勞裂縫成長行為”,碩士論文,台灣海洋大學材料工程所,2012。
[17] H. U. Qi, ”Fatigue crack growth of titanium alloy joints by electron beam welding,” Rare Metals, pp. 1-6, 2013.
[18] L. B. Ji, ”Morphologies at fatigue crack tip of Ti-6Al-4V electron beam welding joints,” Zhongguo Youse Jinshu Xuebao/Chinese Journal of Nonferrous Metals, Vol. 21, No. 1, pp. 102-109, 2011.
[19] T. S. Balasubramanian, ”Fatigue performance of gas tungsten arc, electron beam, and laser beam welded Ti-6Al-4V alloy joints,” Journal of Materials Engineering and Performance, Vol. 20, No. 9, pp. 1620-1630, 2011.
[20] R. Cortez, ”Investigation of variable amplitude loading on fretting fatigue behavior of Ti-6Al-4V,” International Journal of Fatigue, Vol. 21, No. 7, pp. 709-717, 1999.
[21] O. Jin, “Investigation into cumulative damage rules to predict fretting fatigue life of Ti-6Al-4V under two-level block loading condition.” Journal of Engineering Materials and Technology, Transactions of the ASME, Vol. 123, No. 3, pp.315-323, 2003.
[22] Y. Uematsu, “Fatigue crack growth behavior of Ti-6Al-4V alloy with bimodal microstructure under constant and non-stationary variable amplitude load sequence.” Nihon Kikai Gakkai Ronbunshu, A Hen/Transactions of the Japan Society of Mechanical Engineers, Part A, Vol. 71, No.8, pp.1160-1166, 2005.
[23] A. A. Griffith, “The Phenomena of Rupture and Flow in Solids.” Phil. Trans. Roy. Soc. Of London, A221, pp.163-197.
[24] G. R. Irwin, "Fracture Dynamics Fracturing of Metals." American Society for Metals, Cleveland, OH, 1949, pp.147-166.
[25] G. R. Irwin, "Analysis of Stresses and Strains Near The End of a Crack Traversing a Plate." Journal of Applied Mechanics, Trans. Of ASME, Vol. E24, 1957, pp.361-364
[26] J. A. Bannantine, J. J. Comer, J. L. Handerck, "Fundamentals of Metal Fatigue Analysis." Prentice Hall Englewood Cliffts, p90.
[27] E. Zahavi, “FATIGUE DESIGN : Life Expectancy of Machine Parts,”CRC Press. 1996.
[28] J. A. Bannantine, J. J. Comer, J. L. Handerck, "Fundamentals of Metal Fatigue Analysis." Prentice Hall Englewood Cliffts, p91.
[29] 岡村弘之,”線彈性破壞力學基礎”,五南圖書出版,180頁,2009。
[30] “Standard Test Method for Plane-Strain Fracture Toughness of Metallic Materials”, Annual Book of ASTM Standards, E 399-90.
[31] P. C. Paris and F. Erdogan, “A critical analysis of crack propagation law,” Journal of Basic Engineering, Vol. D85, pp. 528-534, 1963.
[32] J. A. Bannantine, J. J. Comer, J. L. Handerck, "Fundamentals of Metal Fatigue Analysis." Prentice Hall Englewood Cliffts, p105.
[33] W. Elber, “Fatigue Crack Closure under Cyclic Tension”, Engineering Fracture Mechanics, Vol. 2, No. 1, 1970, pp. 37-45.
[34] W. Elber, “The Significance of Fatigue Crack Closure”, Damage Tolerance in Aircraft Structures, ASTM STP 486, 1971, pp. 230-242.
[35] S. Suresh, Fatigue of Materials, Cambridge University Press, 1991, pp. 222-271.
[36] G.P. Cherepanov, “Crack propagation in continuous media”,PMM vol. 31, no. 3, 1967, pp. 476–488.
[37] J. R. Rice, “A Path Independent Integral and the Approximate Analysis of Strain Concentration by Notches and Cracks”, Journal of Applied Mechanics, Vol. 35, 1968, pp. 379-386.
[38] “Standard Test Method for Measurement of Fatigue Crack Growth Rates”, ASTM E647-11.
[39] “Standard Test Method for Measurement of Fracture Toughness”, ASTM E1820-11.
[40] “Standard Test Method for Measurement of Fracture Toughness”, ASTM E1820-11, p30.
[41] “Standard Test Methods for Tension Testing of Metallic Materials,” ASTM E8, American Society for Testing and Materials, United States of America, 2012.
[42] M. Matsuishi and T. Endo, "Fatigue of Metals Subjected to Varying Stress." Japan Society of Mechanical Engineers, Japan, 1968.
[43] "Section 3: Metals Test Methods and Analytical Procedure, Vol. 03.01, Metals-Mechanical Testing: Elevated and Low-Temperature Tests." American Society for Testing and Materials, United States of America, 1986.
[44] J. A. Bannantine, J. J. Comer, J. L. Handerck, "Fundamentals of Metal Fatigue Analysis." Prentice Hall Englewood Cliffts, p107.
[45] J. A. Bannantine, J. J. Comer, J. L. Handerck, "Fundamentals of Metal Fatigue Analysis." Prentice Hall Englewood Cliffts, p202.
[46] J. A. Bannantine, J. J. Comer, J. L. Handerck, "Fundamentals of Metal Fatigue Analysis." Prentice Hall Englewood Cliffts, p1123.
[47] “Standard Specification for Titanium and Titanium Alloy Strip, Sheet, and Plate.” ASTM B265, American Society for Testing and Materials, United States of America, 2015.
[48] 羅志明,”Ti-6Al-4V鈦合金電子束銲件之疲勞裂縫成長研究”,碩士論文,國立中央大學,2018。
[49] Jaap Schijve, "Fatigue of structures and materials.", Springer, pp.229.
[50] Pierre Marmy, "The effect of hydrogen on the fracture toughness of the titanium alloys Ti6Al4V and Ti5Al2.5Sn before and after neutron irradiation.", Association Euratom- Confédération Suisse Ecole Polytechnique fédérale de Lausanne 5232 Villigen , PSI, Switzerland.
[51] ASM Handbook, "Fatigue and fracture volume19."
指導教授 黃俊仁(Jiun-Ren Hwang) 審核日期 2019-7-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明