參考文獻 |
參考文獻
[1] 曾婉如,“鈦金屬市場現況與應用商機“,中工高雄會刊,第21卷,第1期。
[2] 洪祖昌,”從電子束焊接談技術引進與研究發展”,機械工業,66-71頁,1985。
[3] 高道鋼,“鈦銲接技術”,全華科技圖書出版,2-15頁,2001。
[4] G. LaFlamme, J. Knoefel, “Application of electron beam welding,” International Conference on Power Beam Technology, Brighton, 10-12 September, Abington, Cambridge, 1986, pp. 59-74.
[5] 洪胤庭,“純鈦及鈦合金特性及製程介紹”,中工高雄會刊,第21卷,第1期,16-18頁。
[6] 朱建平、陳瑾惠、簡嘉毅,鈦-鉬合金熱處理後拉伸疲勞性質研究,碩士論文,國立成功大學材料科學及工程學系所,2005。
[7] 陸美源,“ Ti-6Al-4V與Ti-15V-3Cr-3Al-3Sn 銲件之高溫缺口拉伸性質研究”,碩士論文,國立台灣海洋大學,2011。
[8] 賴耿陽,“金屬鈦(理論與應用) ”,台南:復漢出版社,50-56頁,2000。
[9] K. P. Rao, ”Fracture toughness of electron beam welded Ti-6Al-4V,” Journal of Materials Processing Technology, Vol. 199, No. 1, pp. 185-192, 2008.
[10] K. K. Murthy, ”Fracture toughness of Ti-6Al-4V after welding and post weld heat treatment ” Welding Journal, Vol. 76, No. 2, p 81s-91s, 1997.
[11] J. L. Barreda, ”Influence of the filler metal on the mechanical properties of Ti-6Al-4V electron beam weldments,” Vacuum, Vol. 85, No. 1, pp. 10-15, 2010.
[12] 林邵品,銲接製程對308L沃斯田不鏽鋼和道疲勞裂縫成長行為之影響,碩士論文,國立清華大學,2011。
[13] 陳香如,銲接製程對309L沃斯田鐵系不鏽鋼銲道之疲勞裂縫成長影響,碩士論文,國立清華大學,2012。
[14] 丁逸勳,”Ti-6Al-4V、SP700銲件機械性質特性”,碩士論文,台灣海洋大學材料工程所,2006。
[15] 丁逸勳,”環境效應對雙相 α + β 鈦合金雷射銲件之疲勞裂縫成長行為”,博士論文,台灣海洋大學材料工程所,2011。
[16] 張世宗,”Ti-15V-3Cr-3Sn-3Al缺口拉伸性質及疲勞裂縫成長行為”,碩士論文,台灣海洋大學材料工程所,2012。
[17] H. U. Qi, ”Fatigue crack growth of titanium alloy joints by electron beam welding,” Rare Metals, pp. 1-6, 2013.
[18] L. B. Ji, ”Morphologies at fatigue crack tip of Ti-6Al-4V electron beam welding joints,” Zhongguo Youse Jinshu Xuebao/Chinese Journal of Nonferrous Metals, Vol. 21, No. 1, pp. 102-109, 2011.
[19] T. S. Balasubramanian, ”Fatigue performance of gas tungsten arc, electron beam, and laser beam welded Ti-6Al-4V alloy joints,” Journal of Materials Engineering and Performance, Vol. 20, No. 9, pp. 1620-1630, 2011.
[20] R. Cortez, ”Investigation of variable amplitude loading on fretting fatigue behavior of Ti-6Al-4V,” International Journal of Fatigue, Vol. 21, No. 7, pp. 709-717, 1999.
[21] O. Jin, “Investigation into cumulative damage rules to predict fretting fatigue life of Ti-6Al-4V under two-level block loading condition.” Journal of Engineering Materials and Technology, Transactions of the ASME, Vol. 123, No. 3, pp.315-323, 2003.
[22] Y. Uematsu, “Fatigue crack growth behavior of Ti-6Al-4V alloy with bimodal microstructure under constant and non-stationary variable amplitude load sequence.” Nihon Kikai Gakkai Ronbunshu, A Hen/Transactions of the Japan Society of Mechanical Engineers, Part A, Vol. 71, No.8, pp.1160-1166, 2005.
[23] A. A. Griffith, “The Phenomena of Rupture and Flow in Solids.” Phil. Trans. Roy. Soc. Of London, A221, pp.163-197.
[24] G. R. Irwin, "Fracture Dynamics Fracturing of Metals." American Society for Metals, Cleveland, OH, 1949, pp.147-166.
[25] G. R. Irwin, "Analysis of Stresses and Strains Near The End of a Crack Traversing a Plate." Journal of Applied Mechanics, Trans. Of ASME, Vol. E24, 1957, pp.361-364
[26] J. A. Bannantine, J. J. Comer, J. L. Handerck, "Fundamentals of Metal Fatigue Analysis." Prentice Hall Englewood Cliffts, p90.
[27] E. Zahavi, “FATIGUE DESIGN : Life Expectancy of Machine Parts,”CRC Press. 1996.
[28] J. A. Bannantine, J. J. Comer, J. L. Handerck, "Fundamentals of Metal Fatigue Analysis." Prentice Hall Englewood Cliffts, p91.
[29] 岡村弘之,”線彈性破壞力學基礎”,五南圖書出版,180頁,2009。
[30] “Standard Test Method for Plane-Strain Fracture Toughness of Metallic Materials”, Annual Book of ASTM Standards, E 399-90.
[31] P. C. Paris and F. Erdogan, “A critical analysis of crack propagation law,” Journal of Basic Engineering, Vol. D85, pp. 528-534, 1963.
[32] J. A. Bannantine, J. J. Comer, J. L. Handerck, "Fundamentals of Metal Fatigue Analysis." Prentice Hall Englewood Cliffts, p105.
[33] W. Elber, “Fatigue Crack Closure under Cyclic Tension”, Engineering Fracture Mechanics, Vol. 2, No. 1, 1970, pp. 37-45.
[34] W. Elber, “The Significance of Fatigue Crack Closure”, Damage Tolerance in Aircraft Structures, ASTM STP 486, 1971, pp. 230-242.
[35] S. Suresh, Fatigue of Materials, Cambridge University Press, 1991, pp. 222-271.
[36] G.P. Cherepanov, “Crack propagation in continuous media”,PMM vol. 31, no. 3, 1967, pp. 476–488.
[37] J. R. Rice, “A Path Independent Integral and the Approximate Analysis of Strain Concentration by Notches and Cracks”, Journal of Applied Mechanics, Vol. 35, 1968, pp. 379-386.
[38] “Standard Test Method for Measurement of Fatigue Crack Growth Rates”, ASTM E647-11.
[39] “Standard Test Method for Measurement of Fracture Toughness”, ASTM E1820-11.
[40] “Standard Test Method for Measurement of Fracture Toughness”, ASTM E1820-11, p30.
[41] “Standard Test Methods for Tension Testing of Metallic Materials,” ASTM E8, American Society for Testing and Materials, United States of America, 2012.
[42] M. Matsuishi and T. Endo, "Fatigue of Metals Subjected to Varying Stress." Japan Society of Mechanical Engineers, Japan, 1968.
[43] "Section 3: Metals Test Methods and Analytical Procedure, Vol. 03.01, Metals-Mechanical Testing: Elevated and Low-Temperature Tests." American Society for Testing and Materials, United States of America, 1986.
[44] J. A. Bannantine, J. J. Comer, J. L. Handerck, "Fundamentals of Metal Fatigue Analysis." Prentice Hall Englewood Cliffts, p107.
[45] J. A. Bannantine, J. J. Comer, J. L. Handerck, "Fundamentals of Metal Fatigue Analysis." Prentice Hall Englewood Cliffts, p202.
[46] J. A. Bannantine, J. J. Comer, J. L. Handerck, "Fundamentals of Metal Fatigue Analysis." Prentice Hall Englewood Cliffts, p1123.
[47] “Standard Specification for Titanium and Titanium Alloy Strip, Sheet, and Plate.” ASTM B265, American Society for Testing and Materials, United States of America, 2015.
[48] 羅志明,”Ti-6Al-4V鈦合金電子束銲件之疲勞裂縫成長研究”,碩士論文,國立中央大學,2018。
[49] Jaap Schijve, "Fatigue of structures and materials.", Springer, pp.229.
[50] Pierre Marmy, "The effect of hydrogen on the fracture toughness of the titanium alloys Ti6Al4V and Ti5Al2.5Sn before and after neutron irradiation.", Association Euratom- Confédération Suisse Ecole Polytechnique fédérale de Lausanne 5232 Villigen , PSI, Switzerland.
[51] ASM Handbook, "Fatigue and fracture volume19."
|