博碩士論文 106323056 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:58 、訪客IP:13.59.217.105
姓名 張博崴(Bo-Wei Jhang)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 冷媒R-141b於氟化石墨烯表面改質平板之沸騰熱傳性能研究
相關論文
★ 冷卻水溫度與冰水溫度對離心式冰水主機性能影響之實驗分析★ 不同結構與幾何形狀對熱管性能之影響
★ 油冷卻器熱傳與壓降性能實驗分析★ 水對冷媒R22在板式熱交換器內之性能測試分析
★ 水對水在不同板片型式之板式熱交換器性能測試分析與比較★ 油冷卻器性能測試分析與比較
★ 空調機用水簾式暨光觸媒空氣清淨機 研製及測試★ 水對空氣在板式熱交換器之性能測試分析
★ 板片入出口及入出口管路壓降估計對板式熱交換器壓降性能影響分析★ 微熱交換器之設計與性能測試
★ 板式熱交換器之入出口壓降實驗分析★ 液體冷卻系統中之微熱交換器性能分析與改良
★ 直接模擬蒙地卡羅法於高低速流場之模擬★ 液體微熱交換器之熱傳增強研究
★ 冷媒R22在板式熱交換器內之凝結熱傳及壓降性能實驗分析★ 不同參數對燒結式熱管性能之影響研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本研究以冷媒 R-141b為工作流體在一大氣壓下進行實驗探討石墨烯結構於未成長銅片表面之池沸騰熱傳影響,實驗結果分為未成長銅片表面、石墨烯表面、氟化石墨烯表面之池沸騰熱傳,共三部份做探討。
於池沸騰熱傳實驗結果顯示在高熱通量有石墨烯成長的表面有較高的熱傳性能,並且在實驗中使用高速攝影機可視化觀察沸騰情況,從影片觀察中可以發現石墨烯表面沸騰時產生的汽泡相較於未成長銅片表面有較大的汽泡產生,而對於沸騰增強原因是因為石墨烯表面對表面接觸角的改變。
石墨烯成長表面的接觸角從14o增加到19o,而銅片表面有許多大小不同的孔洞,對於相同尺寸的孔洞,大接觸角表面較能關不凝結氣體在孔洞中,成為有效的成核孔洞,進而提升沸騰時表面汽泡密度,增加沸騰熱傳。
石墨烯表面池沸騰的臨界熱通量提升,需要從動態實驗觀察不同熱傳表面對於汽泡生成時間長短討論,對於汽泡離開表面需要時間越長,代表在高熱通量時汽泡容易結合在一起,成大汽泡後造成區域燒乾的問題。燒乾對於電子設備有很大的影響,因此在石墨烯提高界熱通量的效能也值得作為電子散熱提升的使用。
摘要(英) In this study, the refrigerant R-141b was used as the working fluid at atmospheric pressure to investigate the influence of the boiling heat transfer with graphene coating on the copper plate. The experimental results were divided into smooth surface, graphene surface and fluorinated graphene surface. Biography, a total of three parts to discuss.
The results of the boiling heat transfer experiment show that the surface with high heat flux and graphene growth has higher heat transfer performance, and the high speed camera is used to visually observe the boiling condition in the experiment. It can be found from the film observation that the surface of graphene coated for the number of bubbles generated is high erthan the surface of the plate. The reason for the increase in boiling result is due to the change in the surface contact angle of the graphene surface.
The contact angle of the graphene growth surface increases from 13o to 22o, and there are many holes of different sizes on the surface of the copper plate. For the same size of the hole, the large contact angle surface can close the non-condensing gas in the hole and become an effective nucleation site. In turn, the surface bubble density during boiling is increased, and the boiling heat transfer is increased.
The critical heat flux of graphene surface pool boiling increases. It is necessary to observe the different heat transfer surfaces from high speed film to calculate bubble frequency. The longer the bubble generation time is, the longer it takes for the bubbles to leave the surface, which means that the bubbles are easily combined at high heat flux. The problem of causing the area to dry out after forming a large bubble. Dry out has a great influence on electronic equipment, so the efficiency of increasing the heat flux in graphene is also worthy of being used as an electronic heat sink.
關鍵字(中) ★ 奈米結構表面
★ 石墨烯成長表面
★ 改質石墨烯表面
★ 池沸騰熱傳
關鍵字(英)
論文目次 摘要 I
ABSTRACT II
符號說明 VI
表目錄 VIII
圖目錄 IX
第1章、 前言 1
1.1研究背景與動機 1
1.2研究目的 5
第2章、 文獻回顧 12
2.1 接觸角對沸騰影響 12
2.2奈米結構對流體接觸特性 12
2.2.1奈米結構對池沸騰熱傳之影響 14
2.3 奈米尺度塗層對沸騰提升 15
2.4石墨烯製程 17
2.5接觸角改善 18
2.6石墨烯熱傳 19
2.7氟化石墨烯改質對接觸角影響 21
第3章、 實驗方法 35
3.1實驗板片的表面製作 35
3.2實驗系統 36
3.2.1 循環系統 36
3.2.2數據擷取系統 37
3.3 汽泡成長影像擷取 38
3.4實驗方法 38
3.4.1 系統充填冷媒 38
3.4.2實驗步驟 38
3.5 實驗數據換算 39
3.5.1 加熱瓦數(q) 39
3.5.2 熱傳係數 40
3.5.3汽泡大小與頻率分析 40
3.6拉曼光譜檢測裝置與其原理 41
第4章、 結果與討論 55
4.1平滑表面之池沸騰熱傳 55
4.2石墨烯氟化石墨烯與平板比較 56
4.3電泳石墨烯與平板比較 60
第5章、 結論 86
第6章、 文獻 87
第7章、 附錄 90
參考文獻 [1] Fan, C.-F., and Yang, C.-Y., 2006, "Pool boiling of refrigerants R-134a and R-404A on porous and structured tubes – Part I, visualization of bubble dynamics," Journal Enhanced Heat Transfer, Vol. 13 pp. 85-97
[2] 劉建富, "狹小空間內微多孔表面之蒸發熱傳性能研究,"能源工程研究所,國立中央大學,桃園縣,2013.
[3] Chang, J. Y., and You, S.M., 1997b, "Enhanced boiling heat transfer from micro-porous surfaces: effects of a coating composition and method, " International Journal Heat Mass Transfer. Vol. 40, pp. 4449–4460.
[4] Collier, J. G., and Thome, J. R., 1994, Convective Boiling and Condensation, Third Edition. Oxford University Press New York. Chapter 4, pp. 148-151.
[5] Guo, Z., Liu, W., 2007, "Biomimic from the superhydrophobic plant leaves in nature:Binary structure and unitary structure," Plant Science,Vol. 172, pp.1103–1112.
[6] Shen, P., Uesawa, N., Inasawa, S., and Yamaguchi, T., 2010, "Characterization of Flowerlike Silicon Particles Obtained from Chemical Etching:Visible Fluorescence and Superhydrophobicity " Langmuir. Vol. 26, pp. 13522–13527.
[7] Jeong, H. E., Kwak, M. K., Park, C. I., Suh, K.Y., 2009, "Wettability of nanoengineered dual-roughness surfaces fabricated by UV-assisted capillary force lithography" Journal of Colloid and Interface Science.Vol. 339 pp. 202–207.
[8] Kwon, Y., Patankar, N., Choi, J., and Lee, J., 2009, "Design of Surface Hierarchy for Extreme Hydrophobicity" Langmuir. Vol. 25, pp. 6129– 6136.
[9] Ujereh, S., Fisher, T., Mudawar, I., 2007, “Effects of carbon nanotube arrays on nucleate pool boiling” International Journal of Heat and Mass Transfer. Vol. 50, pp. 4023– 4038.
[10] Chen, R., Lu, M. C., Srinivasan, V., Wang, Z.,Cho, H. H., Majumdar, A., 2009, “Nanowires for Enhanced Boiling Heat Transfer” Nano Lett., Vol. 9, pp. 548–553.
[11] Gao, H. J., Wang, X., Yao,H. M. Gorb, S., Arzt, E., 2005, “Mechanics of hierarchical adhesion structures of geckos” Mech. Mater.Vol. 37, pp. 275– 285.
[12] B.J. Zhang, K.J. Kim, 2001, "Effect of liquid uptake on critical heat flux utilizing a three dimensional, interconnected alumina nano porous surfaces, " Applied Physics Letters, Vol 101, pp. 054104.
[13] C.Y. Lee, B.J. Zhang, K.J. Kim, 2012, "Morphological change of plain and nano-porous surfaces during boiling and its effect on nucleate pool boiling heat transfer, " Experimental Thermal and Fluid Science ,Vol 40, pp. 150–158.
[14] J. Gao, L.-S. Lu, J.-W. Sun, X.-K. Liu, B. Tang, 2017, "Enhanced boiling performance of a nanoporous copper surface by electrodeposition and heat treatment," Heat and Mass Transfer, Vol 53, pp. 947–958.
[15] L. Lu, T. Fu, Y. Tang, T. Tang, B. Tang, Z. Wan, 2016, "A novel in-situ nanostructure forming route and its application in pool-boiling enhancement," Experimental Thermal and Fluid Science ,Vol 72, pp. 140–148.
[16] C.Y. Lee, M.M.H. Bhuiya, K.J. Kim, 2010, "Pool boiling heat transfer with nano-porous surface,"International Journal of Heat and Mass Transfer, Vol 53, pp. 4274–4279.
[17] 蘇清源, 光連雙月刊2013年11月‧No.108 pp. 61-68.
[18] Ningbo NB Scientific Instruments Company., Ltd, 產品說明中敘述影響接觸角值的因素.
[19] Chinh Thanh Nguyen and BoHung Kim, 2016, "Stress and Surface Tension Analyses of Water on Graphene-Coated Copper Surfaces," International Journal of Precision Engineering and Manufacturing, Vol. 17, No. 4, pp. 503-510.
[20] M.S. El-Genk, J.L. Parker, 2005, "Enhanced boiling of HFE-7100 dielectric liquid onporous graphite," Energy Convers. Manage., Vol 46, pp. 2455–2481.
[21] H. Seo, J. H. Chu, S.-Y. Kwon, and I. C. Bang, "Pool boiling CHF of reduced graphene oxide, graphene, and SiC-coated surfaces under highly wettable FC-72," International Journal Heat Mass Transf., vol. 82, p. 490–502, 2015.
[22] A. Jaikumar, A. Gupta, S. G. Kandlikar, C.-Y. Yang, and C.-Y. Su, 2017, "Pool Boiling Enhancement through Graphene and Graphene Oxide Coatings," International Journal of Heat and Mass Transfer., Vol. 109, p. 357–366.
[23] Ho Seon Ahn, Jin Man Kim, TaeJoo Kim, Su Cheong Park, Ji Min Kim, Youngjae Park, Dong In Yu,Kyoung Won Hwang, HangJin Jo, Hyun Sun Park, Hyungdae Kim and Moo Hwan Kim, 2014, "Enhanced heat transfer is dependent on thickness of graphene films: the heat dissipation during boiling," Scientific Reports., Vol. 4, p.6276-6280.
[24] Kim, TaeJoo, Kim, Ji Min, Kim, Ji Hoon, Park, Su Cheong and Ahn, Ho Seon, 2017, "Orientation effects on bubble dynamics and nucleate pool boiling heat transfer of graphene-modified surface," International Journal of Heat and Mass Transfer., Vol 108, p. 1393-1405.
[25] Gangtao Liang, Issam Mudawar, 2019, "Review of pool boiling enhancement by surface modification," International Journal of Heat and Mass Transfer, Vol 128, pp. 892–933.
[26] Mathkar, A. , Narayanan, T. N., Alemany, L. B., Cox, P. , Nguyen, P. , Gao, G. , Chang, P. , Romero‐Aburto, R. , Mani, S. A. and Ajayan, 2013, "Synthesis of Fluorinated Graphene Oxide and its Amphiphobic Properties." Particle Particle Systems Characterization, Vol 30, p. 266-272.
[27] 許凱翔, "利用化學氣相沉積法於規模化合成大面積石墨烯之研究,"能源工程研究所,國立中央大學,桃園縣,2018.
[28] Cooper, M.G., 1984, “Saturation nuclear pool boiling – a simple correlation," International Chemical Engineering Symposium Series, Vol. 86, pp. 785-792.
[29] S.G. Kandlikar, 2001, "A theoretical model to predict pool boiling CHF incorporating effects of contact angle and orientation," Journal of Heat Transf., Vol 123, pp. 1071–1079.
指導教授 楊建裕(Chien-Yuh Yang) 審核日期 2019-8-7
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明