博碩士論文 105323079 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:27 、訪客IP:18.188.195.193
姓名 陳柏愷(Po-Kai Chen)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 基於雙光子光致聚合技術以連續掃描法製作三維結構之研究
(Research of Three-dimensional Structures Fabricated by Continuous Scanning Method based on Two-photon Photopolymerization)
相關論文
★ 雙光子光致聚合微製造系統之研發★ 雙光子光致聚合五軸微製造系統之雷射加工路徑生成研究
★ 椎弓根螺釘定位演算法及導引夾治具自動化設計流程開發★ 雙光子聚合微製造技術以能量均勻橢圓體為基之曝光時間最佳化研究
★ 雙光子光致聚合微製造以弦高誤差為基之切層演算法★ 雙光子光致聚合微製造技術以螺旋線雷射掃描路徑增強微結構強度研究
★ 雙光子聚合微製造技術之三維結構 製造品質改進研究★ 利用二維多重圖像建構三維三角網格模型的生成與品質改進
★ 組織工程用冷凍成型製造系統 之自動化製作流程開發★ 自動相機校正與二維影像輪廓萃取研究
★ 基於雙光子光致聚合技術之四軸微製造系統製作高深寬比結構之研究★ 冷凍成型積層製造之機台設計與組織工程支架製作參數調校研究
★ 基於二維影像輪廓重建三維模型技術之多視角相機群組空間座標系統整合★ 應用於大型物體三維模型重建之多重二維校正板相機校正流程開發
★ 組織工程用冷凍成型積層製造之固態水支撐結構生成研究★ 聚醚醚酮之積層製造系統開發
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 傳統的雙光子光致聚合(Two-photon Phtotopolymerization)微製造技術,通常藉由體素與體素緊密排列的方式來形成一層的二維圖形,並且再藉由積層製造的方法來製作出三維結構,其體素的空間解析度可達到次微米等級。然而在製作次毫米尺寸以上之結構時,如此高的空間解析度勢必要犧牲製作時間,一但製造時間拉長,製造失敗的風險也將大幅提升。對此,本研究建立一套快速製造且結構完整的TPP微製造系統。透過連續掃描的方式,並且儘對於輪廓表面進行曝光,以利提升整提製作效率。再透過運用在熔融沉積(Fused Deposition Modeling, FDM)的內部支撐加強模型結構的概念,來運用在TPP微製造中,並且成功製作次毫米結構。於本研究中,首先透過上昇掃描法來建立出雷射功率及平台移動速度對於線徑尺寸影響之資料庫。接著透過簡單外型來找尋出製作三維結構時的最佳參數。最後則是成功製作出次毫米尺寸的人體跟骨模型,並且比較有無內部支撐結構的差異及製造時間。
摘要(英) The conventional Two-photon Photopolymerization(TPP) micro-fabrication technology usually forms a two-dimensional patterns by closely stacking voxels and voxels, and then creates a three-dimensional structure by additive manufacturing. The spatial resolution of voxels can reach sub-micro level. However, it must be a trade off between high spatial resolution and total fabrication time when making a structure with a sub-millimeter size or more. Once the fabrication time longer, the risk of manufacturing failure will be greatly increased. To improve overall fabricating time, this study fabricates sub-millimeter structures by continuous scanning method and exposing only on the contour of the structure. And then, this study applies the inner support method previously applied to Fused Deposition Modeling (FDM) to TPP microfabrication, and the submillimeter structure was successfully fabricated. In this study, the ascending method is first used to establish a database of influence of laser power and scanning speed on the line size. And then, find an optimal parameter by fabricating a simple model. Finally, the human calcaneus model with sub-millimeter size was successfully produced, and then comparing structural differences and fabricating time with or without inner support.
關鍵字(中) ★ 雙光子光致聚合
★ 連續掃描
★ 內部支撐
關鍵字(英) ★ Two-photon Photopolymeization
★ Continuous Scanning Method
★ Inner support
論文目次 摘要 I
Abstract II
誌謝 III
目錄 IV
圖目錄 VI
表目錄 IX
第一章 緒論 1
1-1研究背景 1
1-2文獻回顧 2
1-4研究動機與目的 14
1-5論文架構 15
第二章 理論說明 16
2-1雙光子吸收光致聚合反應 16
2-2雙光子微製造之線寬特徵尺寸 19
2-3雙光子微製造技術製造流程 22
2-4 FDM內部支撐策略強化結構強度 23
第三章 研究方法 28
3-1雙光子微製造系統介紹 28
3-2樹酯配製 31
3-3 雷射焦點光強度模擬 34
3-4雷射輸出功率及掃描速度對線徑尺寸影響之實驗方法 35
3-5使用內部支撐策略強化TPP空心微結構強度 37
3-6以連續掃描法製作三維結構之實驗方法 38
第四章 結果與討論 48
4-1雷射輸出功率對線徑尺寸影響之實驗結果 48
4-2平台移動速度對線徑尺寸影響之實驗結果 54
4-3以連續掃描法製作三維結構之實驗結果 59
第五章 未來與展望 68
5-1結論 68
5-2未來展望 69
參考文獻 70
參考文獻 [1] M. Goeppert-Mayer, “Elementary Processes with Two Quantum Jumps”, Annals of Physics, Vol. 9, No. 2, pp. 273-294, 1931.
[2] W. Kaiser and C. G. B. Garrett, “Two-photon Excitation in CaF2:Eu2+”, Physical Review Letters, Vol. 7, No. 6, pp. 229-231, 1961.
[3] W. Denk, J. H. Stricker and W. W. Webb, “Two-photon Laser Scanning Fluorescence Microscopy”, Science, Vol. 248, No. 4951, pp. 73-76, 1990.
[4] J. D. Bhawalkar, N. D. Kumar, C. F. Zhao and P. N. Prasad, “Two-photon Photodynamic Therapy”, Journal of Clinical Laser Medicine & Surgery, Vol. 15, No. 5, pp. 201-204, 1997.
[5] B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. McCord-Maughon, J. Qin, S. R. Marder and J. W. Perry. “Two-photon Polymerization Initiators for Three-dimensional Optical Data Storage and Microfabrication”, Nature, Vol. 398, No. 6722, pp. 51-54, 1999.
[6] H. B. Sun, S. Matsuo and H. Misawa, “Three-dimensional Photonic Crystal Structures Achieved With Two-photon-absorption Photopolymerization of Resin”, Applied Physics Letters, Vol. 74, No. 6, pp. 786-788, 1999.
[7] S. Maruo, and S. Kawata, “Two-photon-absorbed Near-infrared Photopolymerization for Three-dimensional Microfabrication.” Journal of Microelectromechanical Systems, Vol. 7, No. 4, pp. 411-415, 1998.
[8] 潘恩亞、蒲念文、董玉平與游漢輝,「雙光子吸收光致聚合技術應用於微元件製作之研究」,中正嶺學報,34卷,1-16頁,2005。
[9] L. Li, R. R. Gattass, E. Gershgoren, H. Hwang and J. T. Fourkas, “Achieving λ/20 Resolution by One-Color Initiation and Deactivation of Polymerization”, Science, Vol. 324, pp. 910-913, 2009.
[10] J. F. Xing, X. Z. Dong, W. Q. Chen, X. M. Duan, N. Takeyasu, T. Tanaka and S. Kawata, “Improving Spatial Resolution of Two-photon Microfabrication by Using Photoinitiator With High Initiating Efficiency”, Applied Physics Letters, Vol.90, No. 13, 131106, 2007.
[11] H. B. Sun, T. Kawakami, Y. Xu, J. Y. Ye, S. Matuso, H. Misawa, M. Miwa and R. Kaneko, “Real Three-dimensional Microstructures Fabricated by Photopolymerization of Resins through Two-photon Absorption”, Optics Letters, Vol. 25, No. 15, pp. 1110-1112, 2000.
[12] D. Y. Yang, T. W. Lim, Y. Son, H. J. Kong, K. S. Lee, D. P. Kim and S. H. Park, “Additive Process Using Femto-second Laser for Manufacturing Three-dimensional Nano/Micro-structures”, International Journal of Precision Engineering and Manufacturing, Vol. 8, No. 4, pp. 63-69, 2007.
[13] J. T. Lee, M. C. George, J. S. Moore and P. V. Braun, “Multiphoton Writing of Three-Dimensional Fluidic Channels within a Porous Matrix”, Journal of the American Chemical Society, Vol. 131, No. 32, pp. 11294-11295, 2009.
[14] S. Rekštytė, A. Žukauskas, V. Purlys, Y. Gordienko and M. Malinauskas, “Direct Laser Writing of 3D Polymer Micro/Nanostructures on Metalic Surfaces”, Applied Surface Science, Vol. 270, pp. 382-387, 2013.
[15] T. Baldacchini, A. C. Pons, J. Pons, C. N. LaFratta and J. T. Fourkas, “Multiphoton Laser Direct writing of Two-dimensional Silver Structures”, Optics Express, Vol. 13, No. 4, pp. 1275-1280, 2005.
[16] J. F. Xing, M. L. Zheng and X. M. Duan, “Two-photon Polymerization Microfabrication of Hydrogels: an Advanced 3D Printing Technology for Tissue Engineering and Drug Delivery”, Chemical Society Reviews, Vol. 44, No. 15, pp. 5031-5039, 2015.
[17] S. D. Gittard, A. Nguyen, K. Obata, A. Koroleva, R. J. Narayan and B. N. Chickov, “Fabrication of Microscale Medical Devices by Two-photon Polymerization with Multiple Foci via a Spatial Light Modulator”, Biomedical Optics Express, Vol. 2, No. 11, pp. 3167-3178, 2011.
[18] K. Obata, A. El-Tamer, L. Koch, U. Hinze and B. N. Chichkov, “High-aspect 3D Two-photon Polymerization Structuring with Widened Objective Working Range (WOW-2PP)”, Light-Science & Applications, Vol. 2, doi:10.1038/lsa.2013.72, 2013.
[19] Y. Lin, W. Xiong, L. J. Jiang, Y. S. Zhou and Y. F. Lu, “Precise 3D printing of Micro/Nanostructures Using Highly Conductive Carbon Nanotube-thiol-acrylate Composites”, Laser 3D Manufacturing, Vol. 9738, 973808, 2016.
[20] X. Zheng, K. Cheng, X. Zhou, J. Lin and X. Jing, “A Method for Positioning the Focal Spot Location of Two Photon Polymerization”, AIP Advances, Vol. 7, No. 9, 095318, 2017.
[21] K. Takada, H. B. Sun and S. Kawata, “Improved Spatial Resolution and Surface Roughness in Photopolymerization-based Laser Nanowriting”, Applied Physics Letters, Vol. 86, No. 7, 071122, 2005.
[22] C. Y. Liao, M. Bouriau, P. L. Baldeck, J. C. Léon, C. Masclet and T. T. Chung, “Two-dimensional Slicing Method to Speed up the Fabrication of Micro-objects based on Two-photon Polymerization”, Applied Physics Letters, Vol. 91, No. 3, 033108, 2007.
[23] S. H. Park, S. H. Lee, D. Y. Yang, H. J. Kong and K. S. Lee, “Subregional Slicing Method to Increase Three-dimensional Nanofabrication Efficiency in Two-photon Polymerization”, Applied Physics Letters, Vol. 87, No. 15, 154108, 2005.
[24] S. Kawata, H. B. Sun, T. Tanaka and K. Takada, “Finer Features for functional Microdevices”, Nature, Vol. 412, No. 6848, pp. 697-698, 2001.
[25] H. B. Sun and S. Kawata, “Two-photon Laser Precision Microfabrication and Its Applications to Micro-Nano Devices and Systems”, Journal of Lightwave Technology, Vol. 21 No. 3, pp. 624-633, 2003.
[26] H. B. Sun, T. Tanaka and S. Kawata, “Three-dimensional Focal Spots Related to Two-photon Excitation”, Applied Physics Letters, Vol. 80, No. 20, pp. 3673-3675, 2002.
[27] T. Stichel, B. Hecht, R. Houbertz and G. Sextl, “Two-photon Polymerization as Method for the Fabrication of Large Scale Biomedical Scaffold Applications”, Journal of Laser Micro/Nanoengineering, Vol. 5, No. 3, pp. 209-212, 2010.
[28] T. Stichel, B. Hecht, R. Houbertz and G. Sextl, “Compensation of Spherical Aberration Influences for Two-photon Polymerization Pattering of Large 3D Scaffolds”, Applied Physics a – Materials Science & Processing, Vol. 121, No. 1, pp. 187-191, 2015.
[29] W. Chu, Y. Tan, P. Wang, J. Xu, W. Li, J. Qi and Y. Cheng, “Centimeter-Height 3D Printing with Femtosecond Laser Two-photon Polymerization”, Advanced Materials Technologies, Vol. 3, No. 5, 1700396, 2018.
[30] T. P. Bernat, J. H. Campbell, N. Petta, I. Sakellari, S. Koo, J. H. Yoo and C. Grigoropoulos, “Fabrication of Micron-scale Cylindrical Tubes by Two-photon Polymerization”, Fusion Science and Technology, Vol. 70, No.2, pp. 310-315, 2016.
[31] J. Purtov, A. Verch, P. Rogin and R.Hensel, “Improved Development Procedure to Enhance the Stability of Microstructures Created by Two-photon polymerization”, Microelectronic Engineering, Vol. 194, pp. 45-50, 2018.
[32] L. Yang, J. Li, Y. Hu, C. Zhang, Z. Lao, W. Huang and J. Chu, “Projection Two-photon Polymerization Using a Spatial Light Modulator”, Optics Communications, Vol. 331, pp. 82-86, 2014.
[33] L. Yang, A. El-Tamer, U. Hinze, J. Li, Y. Hu, W. Huang, J. Chu and B. N. Chichkov, “Parallel Direct Laser Writing of Micro-optical and Photonic Structures Using Spatial Light Modulator”, Optics and Lasers in Engineering, Vol. 70, pp. 26-32, 2015.
[34] K. S. Lee, R. H. Kim, D. Y. Yang and S. H. Park, “Advances in 3D Nano/Microfabrication Using Two-photon Initiated Polymerization”, Progress in Polymer Science, Vol. 33, No. 6, pp. 631-681, 2008.
[35] I. I. Shishkin, K. B. Samusev, M. V. Rybin, M. F. Limonov, R. V. Kiyan, B. N. Chickov, Y. S. Kivshar and P. A. Belov, “Two Modes of Laser Lithography Fabrication of Three-dimensional Submicrometer Structures”, Physics of the Solid State, Vol. 56, No. 11, pp. 2166-2172, 2014.
[36] T. W. Lim, S. H. Park and D. Y. Yang, “Contour Offset Algorithm for Precise Patterning in Two-photon Polymerization”, Microelectronic Engineering, Vol. 77, No. 3-4, pp. 382-388, 2005.
[37] S. H. Park, T. W. Lim, D. Y. Yang, S. W. Yi, H. J. Kong and K. S. Lee, “Direct Nano-patterning Methods Using Nonlinear Absorption in Photopolymerization Induced by a Femtosecond Laser”, Journal of Nonlinear Optical Physics & Materials, Vol. 14, No. 3, pp. 331-340, 2005.
[38] S. Wu, J. Serbin and M. Gu, “Two-photon Polymerization for Three-dimensional Micro-fabrication”, Journal of Photochemistry and Photobiology, Vol. 181, No. 1, pp. 1-11, 2006.
[39] 謝岳廷,「基於雙光子光致聚合技術之四軸微製造系統製作高深寬比結構之研究」,國立中央大學,碩士論文,民國104年。
[40] Edmund Optics® (EO), ”Gaussian Beams Calculator”, https://www.edmundoptics.com/resources/tech-tools/gaussian-beams/.
[41] X. Pan and D. Tu, “Research the Effect of Coverage Rate on the Surface Quality in Laser Direct Writing Process”, International Journal of Modern Physics B, Vol. 31, No. 16-19, 2017.
[42] T. W. Lim, Y. Son, D. Y. Yang, H. J. Kong, K. S. Lee and S. H. Park, “Highly Effective Three-dimensional Large-scale Microfabrication Using a Continuous Scanning Method”, Applied Physics a – Materials Science & Processing, Vol, 92, No. 3, pp. 541-545, 2008.
[43] J. Lin, X, Jing, X. Zhou, X. Zheng, R. Gao and Y. Wang, “Scaling Laws of Nanorods in Two-photon Polymerization Nanofabrication Using a Continuous Scanning Method”, AIP Advances, Vol. 6, No. 10, 105014, 2016.
[44] 曾竣煌,「熔融沉積成型技術之路徑規劃與提升製造效率研究」,國立中央大學,碩士論文,民國107年。
[45] Micro resist technology, “OrmoComp - UV Curable Hybrid Polymer for Moulding”, datasheet.
[46] Micro resist technology, “OrmoComp and OrmoClear FX”, datasheet.
[47] S. Aura, T. Sikanen, T. Kotiaho and S. Franssila, “Novel Hybrid Material for Microfluidic Devices”, Sensors and Actuators B: Chemical, Vol. 132, No. 2, pp. 397-403, 2008.
[48] SIGMA-ALDRICH, “661732 ALDRICH”, retrieved July 5, 2017, from http://www.sigmaaldrich.com/catalog/product/aldrich/661732.
[49] T. Stichel, B. Hecht, S. Steenhusen, R. Houbertz and G. Sextl, “Two-photon Polymerization Setup Enables Experimental Mapping and Correction of Spherical Aberrations for Improved Macroscopic Structure Fabrication”, Optics Letters, Vol. 41, No. 18, pp. 4269-4272, 2016.
[50] M. J. Nassue and J. C. Woehl, “Realistic Modeling of the Illumination Point Spread Function in Confocal Scanning Optical Microscopy”, Journal of the Optical Society of America A, Vol. 27, No. 2, pp. 295-302, 2010.
[51] 高健閔,「基於雙光子聚合技術之長軸成形法製造高深寬比結構」,國立中央大學,碩士論文,民國106年。
[52] M. G. Guney and G. K. Fedder, “Estimation of Line Dimensions in 3D Direct Laser Writing Lithography”, Journal of Micromechanics and Microengineering, Vol. 26, No. 10, 105011, 2016.
[53] H. B. Sun, K. Takada, M. S. Kim, K. S. Lee and S. Kawata, “Scaling Laws of Voxels in Two-photon Photopolymerization Nanofabrication”, Applied Physics Letters, Vol. 83, No. 6, pp. 1104-1106, 2003.
[54] B. Tan, K. Venkatakrishnan and A. Makaronets, “Effects of Pulsewidth on Two-photon Polymeization”, Designed Monomers and Polymers, Vol. 16, No. 2, pp. 145-150, 2012.
[55] T. W. Lim and D. Y. Yang, “Direct Fabrication of Nano-Wrinkled 3D Microstructures Using Fitfully Accumulated Two-photon Polymerization”, International Journal of Precision Engineering and Manufacturing, Vol. 16, No. 11, pp. 2427-2431, 2015.
[56] S. H. Park, K. H. Kim, T. W. Lim, D. Y. Yang and K. S. Lee, “Investigation of Three-dimensional Pattern Collapse owing to Surface Tension Using an Imperfection Finite Element Model”, Microelectronic Engineering, Vol. 85, No. 2, pp. 432-439, 2007.
[57] J. D. Kim and Y. G. Lee, “Improvement of Distortion Error for Fabricating Precision Microparts Using Two-photon Photopolymerization”, Journal of Micromechanics and Microengineering, Vol. 26, No. 7, 075012, 2016.
[58] F. C. Wang, Y. Y. Chen, K. A. Wang and T. T. Chung, “The Development of a Long-stroke Precision Positioning Stage for Micro Fabrication by Two-photon Polymerization”, Journal of Micro/Nanoengineering, Vol. 11, No. 1, pp. 1-12, 2016.
[59] T. Bűckmann, N. Stenger, M. Kadic, J. Kaschke, A. Frőlich, T. Kennerknecht, C. Eberl, M. Thiel and M. Wegener, “Tailored 3D Mechanical Metamaterials Made by Dip-in Direct-laser-writing Optical Lithography”, Advanced Materials, Vol. 24, No. 20, pp, 2710-2714, 2012.
[60] C. W. Ha and D. Y. Yang, “Fabrication of Micro Open Structure Using 3D Laser Scanning Method in Nano-stereolithography”, International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale, pp. 299-303, 2014.
指導教授 廖昭仰 審核日期 2019-8-7
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明