博碩士論文 90322025 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:29 、訪客IP:3.144.40.239
姓名 徐豐裕(Feng-Yu Xu)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 鹼骨材反應引致之破裂行為
(the behavior of cracking is due to AAR)
相關論文
★ 花蓮溪安山岩含量之悲極效應研究★ 層狀岩盤之承載力
★ 海岸山脈安山岩之鹼-骨材反應特性及抑制方法★ 集集大地震罹難者居住建築物特性調查分析
★ 岩石三軸室應變量測改進★ 傾斜互層地層之承載力分析
★ 花蓮溪安山岩骨材之鹼反應行為及抑制方法★ 混成岩模型試體製作與體積比量測
★ 台灣骨材鹼反應潛能資料庫建置★ 平台式掃描器在影像擷取及長度量測之應用
★ 溫度及鹽水濃度對壓實膨潤土回脹性質之影響★ 巨觀等向性混成岩製作表面影像與力學性質
★ 膨潤土與花崗岩碎石混合材料之熱傳導係數★ 邊坡上基礎承載力之數值分析
★ 鹼-骨材反應引致裂縫之量測與分析★ 熱探針連續量測法應用於緩衝材料熱傳導係數之量測與分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 摘?要
鹼-骨材反應對混凝土結構物所造成的主要影響有裂隙生長及表面的起泡爆裂(pop-outs)等等。目前鹼-骨材反應的相關試驗規範最後所獲得的成果僅為試體的膨脹量,對於因鹼-骨材反應所引致之裂隙發展,最多只能以文字描述及拍茧奶閬“e現最終現象,無法回溯裂隙生長機制及延伸過程。另外,台灣骨材鹼反應潛能資料庫乃彙整本研究室歷年來所累積本土骨材之室內標準試驗結果、案例調查成果及抑制鹼-骨材反應的方法等研究成果所建立而成,但其中部分區域骨材檢測結果仍然短少,加上部分檢測結果與現地案例調查成果不符,因此應進行補充調查,作為資料庫成果補充及修正之用。
本文首先係以平台式掃描器,擷取以白守蓮安山岩為骨材所製成的混凝土版及純安山岩版的表面影像,回溯觀察在不同浸置(1N NaOH溶液)時間下裂縫的生長情況及其他劣化現象,以瞭解鹼-骨材反應引致之破裂行為。此外,針對蘇花公路、台九線及西部河川等區域進行現地案例調查及骨材取樣,進行混凝土角柱、水泥砂漿棒及加速砂漿棒等標準試驗,檢測這些區域骨材的鹼反應潛能。
根據裂縫成長的回溯觀察,發現裂縫的生成係因水泥漿體無法承受因混凝土內、外部膨脹差異所造成的張力。其他所觀察的破裂行為包括骨材起泡爆裂、貫穿骨材的裂縫及骨材剝離等等。根據資料庫的補充調查試驗結果,發現蘇花公路沿線河川骨材的膨脹量大多高於花東地區之骨材,加上幾處疑似案例的發現,顯示蘇花公路沿線河川區域之骨材應具有相當程度的鹼反應性。此外,台九線上疑似案例所在周遭河川之鹼-骨材反應潛能檢測判定為有害,顯示這些案例劣化現象極可能為鹼-骨材反應所造成的。
摘要(英) ABSTRACT
Typical deleterious features of alkali-aggregate reaction in concrete structures include cracking and spalling of fragments of surface concrete as ‘op-outs’. Most of the standard tests predict aggregate reactivity by measuring the expansion of specimens. The results just show the change in length and are unable to know the causes of cracking and process of cracking due to AAR. Furthermore, the database for potential alkali reactivity of aggregates in Taiwan contain various test data of aggregate reactivity , the investigation results of suspected cases and the methods of inhibitive AAR. Nevertheless, some regions still lack the inspection results of aggregate reactivity or inspection results differ from investigated results of suspected case. Therefore, we should be carried out the supplementary investigations to add the inspection results.
In the study, a scanner is used to get surface image of the specimens which are made with andesite aggregate grains and immersed in a 1-N concentration sodium hydroxide solution. We can realize that deleterious features due to AAR by observing these images. Therefore, this work which contain the investigation of suspected case and sampling in Su-hua road, No.9 road and rivers of the west are enforced. The aggregates from these areas were carried out mortar bar test, concrete prism test and accelerated mortar bar test to predict potential alkali reactivity of aggregates from areas above mentioned.
The results indicate that the surface crack is caused by differential expansion between the surface and the interior concrete. The other deleterious features include pop-outs, stripes of aggregate particles of surface specimen and the cracks passing through aggregate etc. According to the results of supplementary investigation, we obtain a result that the potential alkali reactivity of aggregates which come from the river along Su-hua road is high. In addition, according to the inspected results of aggregate which come from the river around suspected cases of No.9 road, we know that deleterious features of these suspected cases are possibly caused to AAR.
關鍵字(中) ★ 鹼骨材反應
★ 破裂
關鍵字(英) ★ AAR
★ crack
論文目次 目 錄
表?目?錄 IV
圖?目?錄 V
照?片?目?錄 X
第一章 緒 論 1
1-1 研究動機和目的 1
1-2 研究方法 2
第二章 文 獻 回 顧 3
2-1 鹼-骨材反應的分類 3
2-1-1 鹼-氧化矽反應(Alkali- Silica Reaction;ASR) 3
2-1-2 鹼-矽酸鹽反應(Alkali-Silicate Reaction) 4
2-1-3 鹼-碳酸鹽反應(alkali-carbonate reaction;ACR) 4
2-2 鹼-骨材反應的特徵 5
2-2-1 外觀方面 5
2-2-2 內部方面 6
2-3 鹼-骨材反應引致的破裂行為 10
2-3-1 Hobbs理論 10
2-3-2 Fan et al.理論 10
2-4 裂縫觀察與量測 11
2-4-1 人工描繪 11
2-4-2 顯微鏡 15
2-4-3 紫外線螢光樹酯輔以UV光法 15
2-4-4 Underwood合金輔以影像分析 15
2-4-5 超音波檢測法 16
2-5 裂縫寬度應用 19
2-5-1 大地應力推估 19
2-5-2 混凝土膨脹量推估 21
2-6 鹼-骨材反應對鋼筋混凝土膨脹及力學行為之影響 25
2-7 鹼-骨材反應之改善與維修方法 33
第三章 研究項目與方法 36
3-1 鹼-骨材資料庫補充調查與試驗 36
3-1-1 試驗規劃 36
3-1-2 試驗材料及配比 37
3-1-3 試驗方法及步驟 40
3-2 鹼-骨材反應引致之破裂行為 50
3-2-1 實驗規劃 50
3-2-2 試驗骨材 50
3-2-3 試驗儀器及設備 51
3-2-4 試驗方法及步驟 52
第四章 試驗結果與分析 60
4-1 鹼-骨材反應資料庫補充調查 60
4-1-1 加速砂漿棒試驗 66
4-1-2 水泥砂漿棒試驗 69
4-1-3 混凝土角柱試驗 78
4-1-4 現地調查案例 87
4-1-5 綜合分析 91
4-2 鹼-骨材反應引致的破裂行為 100
4-2-1 影像量測技術之改進 100
4-2-2 影像擷取穩定性及解析度對量測精度之影響 103
4-2-3 影像掃瞄與多點式應變計量測膨脹量之比較 109
4-2-4 骨材標定器之應用 110
4-2-5 影像掃描法與多點式應變計之比較 112
4-2-6 膨脹量 116
4-2-7 鹼-骨材反應引致之破裂行為 116
第五章 結論與建議 135
5-1 結論 135
5-2 建議 136
參考文獻 137
附 錄 A 143
參考文獻 參考文獻
1. 田永銘、王淑慧、彭柏翰、賴武徳,「台灣安山岩質骨材之鹼反應行為」,第五屆結構工程研討會,台中,第643~651頁(2000)。
2. 田永銘、楊世和,「台灣東部反應性骨材之探討及分析」,East Asia Alkali-Aggregate Seminar,Tottori,Janpan,pp13-26(1997)。
3. 田永銘、王淑慧、潘亮宇、陳維民,「混凝土鹼-骨材反應劣化與防治」,構造物破壞原因探討與處置研討會論文集,台北,第125-150頁(1999)。
4. 田永銘、楊世和、王淑慧,「台灣東部骨材鹼反應潛能研究」,中國土木水利工程學刊,第十三卷,第一期,第217~226頁(2001a)。
5. 田永銘、楊世和、彭柏翰、王淑慧,「台灣的鹼-骨材反應問題與對策」,土木水利,第二十六卷,第一期,第78-94頁 (1999b)。
6. 巫柏蕙,「港灣混凝土構造物鹼質與粒料反應檢測方法評估研究」,碩士論文,國立中央大學土木工程學系,中壢 (2001)。
7. 李釗、饒正、張道光、陳桂清,「花蓮港區混凝土構造物鹼質與粒料反應之調查研究」,台灣省交通處港灣技術研究所期末報告 (1998)。
8. 林晏吉,「花東地區鹼-骨材反應之成因探討」,碩士論文,國立中央大學土木工程學系,中壢(1999)。
9. 林志寶,「台灣骨材鹼反應潛能資料庫建置」,碩士論文,國立中央大學土木工程學系,中壢 (2002)。
10. 侯彥廷,「平台式掃描器在影像擷取及長度量測之應用」,碩士論文,國立中央大學土木工程學系,中壢 (2002)。
11. 張智峰,「混凝土內部垂直裂縫之繞射行為及偵測,碩士論文,國立中興大學土木工程學系,台中(1999)
12. 張文恭,「花蓮地區單一岩種之鹼-骨材反應研究」,碩士論文,國立中央大學土木工程學系,中壢(2000)。
13. 張庭華,「海岸山脈安山岩之鹼-骨材反應特性及抑制方法」,碩士論文,國立中央大學土木工程研究所,中壢 (2001)。
14. 彭柏翰,「花蓮溪安山岩含量之悲極效應研究」,碩士論文,國立中央大學土木工程研究所,中壢 (2000)。
15. 楊世和,「台灣東部反應性骨材之探討及分析」,碩士論文,國立中央大學土木工程學系,中壢 (1997)。
16. 詹皇祥,「近景數化影像半自動式混凝土裂縫量測」,碩士論文,國立中央大學土木工程學系,中壢 (2001)。
17. 蘇銘鴻,「電滲法運用於抑制鹼質與粒料反應基礎之研究,碩士論文,國立中央大學土木工程學系,中壢(2002)
18. ASTM C215-91, “Standard Test Method for Fundamental Transverse, Longitudinal, and Torsional Frequencise of Concrete Specimens” Annual Book of ASTM Standards, pp.121-124 (1996).
19. ASTM C227-90, “Standard Test Method for Potential Alkali Reactivity of Cement-Aggregate Combinations(Mortar Bar Method),”Annual Book of ASTM Standards, p.125-129 (1996).
20. ASTM C597-91, “Standard Test Method for Pulse Velocity Through Concrete,” Annual Book of ASTM Standards, pp.286-288 (1996).
21. ASTM C1260-94, “Standard Test Method for Potential Alkali Reactivity of Aggregates (Mortar-Bar Method),” Annual book of ASTM Standards, pp. 644-647 (1996).
22. ASTM C1293-95,“Standard Test Method for Concrete Aggregates by Determination of Length Change of Concrete due to Alkali-Silica Reaction,” Annual Book of ASTM Standards, pp.648-653 (1996).
23. Clark, L.A., and Ng, N.E., “The Effect of Alkali-Silica Reaction on Punching Shear Strength of Reinforced Concrete Slabs,” Proceeding 8th International Conference on Alkali-Aggregate Reaction in Concrete, Kyoto, Japan, pp.659-664 (1989).
24. Chengzhi, Z., Aiqin, W., Mingshu T., and Ningsheng Z., “Influence of Dimension of Test Specimen on Alkali-Aggregate Reaction Expansion,” ACI Material Journal, Vol. 96, No. 2, pp. 204-207 (1997).
25. Fujii, M., Kobayashi, K., Kojima, T., and Maehara, H., “The Static and Dynamic Behavir of Reinforced Concrete Beams with Cracking Due to Alkali-Silica Reaction,” Proceeding 7th International Conference on Alkali-Aggregate Reaction in Concrete, Ottawa, Canada, pp.126-130 (1987).
26. Fan, S., and Hanson, J.M., “Length Expansion and Cracking of Plain and Reinforced-Concrete Prisms Due to Alkali-Silica Reaction,” ACI Structural Journal, Vol. 95, No. 4, pp. 480-487 (1998).
27. Fan, S., and Hanson, J. M., “Effect of ASR Expansion and Cracking on structural Behavior of Reinforced Concrete Beams,” ACI Structural Journal, Vol. 95, No. 5, pp. 498-505 (1998).
28. Gross, M.R., “Strain accommodated by brittle failure in adjacent units of the Monterey Formation, U.S.A.: scale effects and evidence for uniform displacement boundary condition,” Journal of Structural Geology, Vol. 17, No. 9, pp. 1303-1318 (1995).
29. Hobbs, D.W., Alkali-Silica Reaction in Concrete, Thomas Telford, London, (1988).
30. Jones A.E.K., and Clark L.A., “The Practicalities and Theory of Using Crack Width Summation to Estimate ASR Expansion.” Proceedings of the Institution of Civil Engineers, Structures and Buildings, Vol. 104, No. 2, pp. 183-192 (1994).
31. Jones A.E.K., and Clark L.A., “Structural Effect of Alkali-Silica Reaction.” Proceeding 10th International Conference on Alkali-Aggregate Reaction in Concrete, Melbourne, Australia, pp.394-401 (1996).
32. Kobayashi, K., Shiraki, R., and Kawai, K., “Influence of Alkali Concentration and Distribution Occurring in Concrete Members on Expansion Due to Alkali-Silica Reaction,” Proceeding 8th International Conference on Alkali-Aggregate Reaction in Concrete, Kyoto, Japan, pp.641-646 (1989).
33. Katayama,T.,“Petrography of Alkali-Aggregate Reactions in Concrete Reactive Minerals and Reaction Products,”East Asia Alkali-Aggregate Reaction Seminar,Tottori,Janpan,(1997).
34. Marrett, R., and Allmendinger, R.W., “Amount of extension on “small” faults : An example from the Viking graben,” Geology, Vol. 20, pp. 47-50 (1992).
35. Marzouk, H., and Langdon, S., “The Effect of Alkali-Aggregate Reactivity on the Mechanical Properties of High and Normal Strength Concrete.” Cement and Concrete Composites , Vol. 25, No. 4, pp. 549-556 (2003).
36. Nishibayashi, S., Yamura, K., and Sakata, K., “Evaluation of Cracking of Concrete Due to Alkali-Aggregate Reaction,” Proceeding 8th International Conference on Alkali-Aggregate Reaction in Concrete, Kyoto, Japan, pp.759-764 (1989).
37. Nemati, K.M., “Preserving microstructure of concrete under load using the Wood's metal technique,” International Journal of Rock Mechanics and Mining Sciences, Vol. 37, No. 1, pp. 133-142 (2000).
38. Swamy, R.N., The Alkali-Silica Reaction in Concrete, Van Nostrand Reinhold, New York, (1992).
39. Shayan, A., “Prediction of alkali reactive potential of some Australian aggregate and correlation with service performance,” ACI Meterial Journal, Vol. 89, pp. 13-23 (1992).
40. Thorsen, T., and Larsen, E.S., “Alkali-Silica Reaction in Damaged Concrete Static and Dynamic Tests-Material Investigations.” Proceeding 10th International Conference on Alkali-Aggregate Reaction in Concrete, Melbourne, Australia, pp.402-409 (1996).
41. Zinin, P., Manghnani, M.H., Wang, Y.C., and Livingston, R.A., “Detection of Cracks in Concrete Composites Using Acoustic Microscopy,” NDT&E International, Vol. 31, No. 1, pp. 283-287 (2000).
指導教授 田永銘(Yung-Ming Tien) 審核日期 2003-7-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明