博碩士論文 106323601 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:26 、訪客IP:3.15.156.140
姓名 林佑怡(Zumrotul Ida)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 不同cusp磁場比例與晶體坩堝旋轉條件對於柴氏生長5吋單晶矽之熱流場及氧雜質傳輸的影響
(Effects of different unbalanced cusp-magnetic ratios and crucible rotation conditions on heat and oxygen transport during the Czochralski growth of 5-inch-diameter silicon crystal)
相關論文
★ 鋰鋁矽酸鹽之負熱膨脹陶瓷製程★ 鋰鋁矽酸鹽摻鈦陶瓷之性質研究
★ 高功率LED之熱場模擬與結構分析★ 干涉微影之曝光與顯影參數對週期性結構外型之影響
★ 週期性極化反轉鈮酸鋰之結構製作與研究★ 圖案化藍寶石基板之濕式蝕刻
★ 高功率發光二極體於自然對流環境下之熱流場分析★ 液珠撞擊熱板之飛濺行為現象分析
★ 柴式法生長氧化鋁單晶過程最佳化熱流場之分析★ 柴式法生長氧化鋁單晶過程晶體內部輻射對於固液界面及熱應力之分析
★ 交流電發光二極體之接面溫度量測★ 柴氏法生長單晶矽過程之氧雜質傳輸控制數值分析
★ 泡生法生長大尺寸氧化鋁單晶降溫過程中晶體熱場及熱應力分析★ KY法生長大尺寸氧化鋁單晶之數值模擬分析
★ 外加水平式磁場柴氏法生長單晶矽之熱流場及氧雜質傳輸數值分析★ 大尺寸LED晶片Efficiency Droop之光電熱效應研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2024-8-16以後開放)
摘要(中) 此數值模擬進行了一系列,以不同cusp磁場比例與晶體 - 坩堝旋轉條件,探討Czochralski長晶過程中對流場,溫度和氧輸送的影響。對於5英吋晶體尺寸的生長進行軸對稱2D模擬。在cusp磁場(CMF)的不同磁比(MR)下,以四種不同的晶體和坩堝旋轉條件比較10mm長的晶體生長。
數值結果說明,在不同的cusp磁場比例下,固液界面的氧含量受到不同晶體和坩堝旋轉條件產生的熔體流動顯著影響。固液界面的氧含量在低反向和同向旋轉下濃度增加,高反向和同向旋轉配合氧濃度隨著MR增加而降低。通過在低坩堝旋轉情況下使用反向旋轉條件,可以獲得沿c-m界面的低氧含量。由於矽熔體中的流動和熱場影響,高坩堝旋轉情況下的氧濃度具有兩種不同的趨勢。底壁附近的高速流動導致氧原子沿坩堝側壁移動得更快,並在自由熔化表面上蒸發得更多。
摘要(英) A series of numerical simulation has been performed to clarify the effects of different cusp-magnetic ratios on the flow, temperature, and oxygen transport under different combinations of crystal-crucible rotation conditions during the Czochralski growth process. The axi-symmetric 2D global simulations were conducted for the growth of 5-inch silicon crystal. Four different crystal and crucible rotation conditions under different magnetic ratios (MRs) of cusp-magnetic field (CMF) were numerically compared of a 10 mm long crystal growth.
The results show that oxygen content along the crystal-melt interface is significantly affected by the melt flow motion generated by different crystal and crucible rotation conditions with different cusp-magnetic ratios. The oxygen content along crystal-melt interface increases at low crucible counter- and iso-rotation rates but decreases at high crucible counter- and iso rotation rates with increasing MRs. Low oxygen content along crystal-melt interface can be obtained by using counter-rotation condition at low crucible rotations. Oxygen concentration at high crucible rotation cases has two different tendency due to the effect of flow and thermal field in the silicon melt. Higher speed flow motion near bottom wall leads oxygen atoms to move faster along the crucible side wall and evaporates more at the free-melt surface.
關鍵字(中) ★ Crytsal-坩堝反轉
★ 氧氣運輸
★ 單晶生長
★ 提拉
★ 數值模擬
關鍵字(英) ★ Crystal-crucible counter rotation
★ oxygen transport
★ single crystal growth
★ Czochralski
★ numerical simulation
論文目次 摘要 i
Abstract ii
Table of Contents iii
List of Figures v
List of Tables viii
Nomenclature ix

Chapter 1. Introduction 1
1.1 Czochralski silicon crystal growth 1
1.2 Oxygen transportation during Czochralski process 2
1.3 Application of a Cusp-Magnetic Field (CMF) 4
1.4 Objectives 6

Chapter 2. Theoretical Formulations and Computational Methods 10
2.1 Physical model 10
2.2 Theoretical formulations 11
2.2.1 Governing equations 11
2.2.2 Turbulence flow 12
2.2.3 Boundary condition for flow fields 14
2.2.4 Boundary condition for thermal fields 15
2.2.5 Boundary condition for oxygen transport 15
2.2.6 Physical significance of the dimensionless numbers 17
2.3 Computational methods 19
2.3.1 Numerical methods 19
2.3.2 Grid and tolerance tests 20

Chapter 3. Results and Discussions 27
3.1 Effects of crucible counter- and iso-rotation rates on the flow, temperature and oxygen transport without cusp-magnetic field (CMF) 27
3.2 Effects of different MRs of CMF on the flow, temperature, and oxygen transport under crucible counter-rotations 32
3.3 Effects of different MRs of CMF on the flow, temperature, and oxygen transport under crucible iso-rotations 35
3.4 Effect of different crystal-crucible counter and iso-rotation conditions on the flow and oxygen transport at different MRs of CMF 36

Chapter 4. Conclusions and Future Works 50
4.1 Conclusions 50
4.2 Future works 51

References 52
參考文獻 [1] J. Czochralski, Z., Ein neues verfahren zur messung der kristallisationsgeschwindigkeit der metalle, Phys. Chem. 92 (1918) 219.
[2] J. Evers, R. Staudigl et al., Czochralskis schöpferischer Fehlgriff: ein Meilenstein auf dem Weg in die Gigabit-Ära – Czochralski′s Creative Mistake: A Milestone on the Way to the Gigabit Era, Angew. Chem. Int. Ed. 42 (2003) 5684-5698.
[3] C. Wang, H. Zhang, T.H. Wang, T.F. Ciszek, A continuous Czochralski silicon crystal growth system, J. Cryst. Growth 250 (2003) 209-214.
[4] M. Vegad, N. M. Bhatt, Review of some aspects of single crystal growth using Czochralski crystal growth technique, Procedia Technology 14 (2014) 438-446.
[5] A. Bogeshi, B. pivac, A. Sasella, A. Tella, Oxygen precipitation in silicon, J. App. Phys 77 (1995) 4170-4236.
[6] J. Friedrich, W. V. Ammon, G. Muller, Czochralski Growth of Silicon Crystal, (2015) 45-78.
[7] Y. H. Hong, B. W. Nam, B. C. Sim, Effect of asymetric magnetic fields on crystal-melt interface in silicon CZ process, J. Cryst. Growth 366 (2013) 95-100.
[8] X. Cen, Y. S. Li, J. Zhan, Three dimensional simulation of melt flow in Czochralski crystal growth with steady magnetic fields, J. Cryst. Growth 340 (2012) 135-141.
[9] H. Matsuo, R. B. Ganesh, S. Nakano, L. Liu, Y. Kangawa, K. Arafune, Y. Ohshita, M. Yamaguchi, K. Kakimoto, Thermal dynamical analysis of oxygen incorporation from a quartz crucible during solidification of multi-crystalline silicon for solar cell, J. of Cryst. Growth 310 (2008) 4666-4671.
[10] A.D. Smirnov, V.V. Kalaev, Development of oxygen transport model in Czochralski growth of silicon crystals, J. Cryst. Growth 310 (2008) 2970-2976.
[11] X. Liu, L. Liu, Z. Li, Y. Wang, Effects of cusp shaped magnetic field on mlt convection and oxygen transport in an industrial CZ-Si crystal growth, J. Cryst. Growth 354 (2012) 101-108.
[12] Y. H. Hong, B. C. Sim, K. B Shim, Effects of zero-Gauss plane and magnetic intensity on oxygen concentration in cusp magnetic CZ crystal, J. Cryst. Growth 295 (2006) 141-147.
[13] J. C. Chen et al., Numerical simulation of oxygen transport during the Czochralski silicon crystal growth with a cusp magnetic field, J. Cryst. Growth 401 (2014) 888–894.
[14] K. Kakimoto, A. Tashiro, H. Ishii, T. Shinozaki, Mechanism of heat and oxygen transfer under electromagnetic CZ crystal growth with cusp-shaped magnetic fields, J. of The Electrochemical society 150 (10) (2003) G648-G652.
[15] M. Watanabe, M. Eguchi, T. Hibiya, Flow and temperature field in molten silicon during Czochralski crystal growth in a cusp magnetic field, J. Cryst. Growth 193 (1998) 402-412.
[16] K. Sueoka, Y. Mukaiyama, K. kobayashi, H. Fukuda, S. Yamaoka, S. Maeda, M. Iizuka, V.M. Mamedov, Computer simulation of intrinsic point defect distribution valid for all pulling conditions in large-diameter Czochralski Si crystal growth, The Electromchemical society (2018) 3-24.
[17] M. S. kulkarni, Defect dynamics in the preseence of nitrogen in growing Czochralski silicon crystal, J. of Cryst. Growth 310 (2008) 324-335.
[18] M.S. Kulkarni, Quantification of defect dynamics in unsteady-state and steady stae Czochralski growth of monocrystalline silicon, The Electromchemical society 151 (2004) G663-G678.
[19] J. S. Kim, T. Y. Lee, Numerical study on the effect of operating parameter on point defects in a silicon crystal during Czochralski growth II. Magnetic effect, , J. of Cryst. Growth 219 (2000) 218-227.
[20] J. S. Kim, T. Y. Lee, Numerical study on the effect of operating parameter on point defects in a silicon crystal during Czochralski growth I. Rotation effect, , J. of Cryst. Growth 219 (2000) 205-217.
[21] J. C. Chen, P. Y. Chiang, T. H. T. Nguyen, C. Hu, C. H. Chen, and C. C. Liu, Numerical simulation of the oxygen concentration distribution in silicon melt for different crystal lengths during Czochralski growth with a transverse magnetic field, J. Cryst. Growth 452 (2016) 6–11.
[22] X. Cen, Y. S. Li, J. Zhan, Three dimensional simulation of melt flow in Czochralski crystal growth with steady magnetic fields, J. Cryst. Growth 340 (2012) 135–141.
[23] P. Daggolu, J. W. Ryu, A. Galyukov, A. Kondratyev, Analysis of the effect of symmetric/asymmetric CUSP magnetic fields on melt/crystal interface during Czochralski silicon growth, J. Cryst. Growth 452 (2016) 22–26.
[24 M. Vegad, N. M. Bhatt, Effect of Location of Zero Gauss Plane on Oxygen Concentration at Crystal Melt Interface During Growth of Magnetic Silicon Single Crystal Using Czochralski Technique, Procedia Technol. 23 (2016) 480–487.
[25] A. Muiznieks, Y. Makarov, J. Virbulis, Application of Magnetic Fields in Industrial Growth, Growth (Lakeland), (2006) 41–54.
[27] D. Vizman, O. Gräbner, G. Müller, 3D numerical simulation and experimental investigations of melt flow in an Si Czochralski melt under the influence of a cusp-magnetic field, J. Cryst. Growth 236 (2002) 545–550.
[28] D. Vizman, J. Friedrich, G. Müller, Comparison of the predictions from 3D numerical simulation with temperature distributions measured in Si Czochralski melts under the influence of different magnetic fields, J. Cryst. Growth 230 (2001) 73–80.
[29] L. Valek and J. Sik, Defect Engineering During Czochralski Crystal Growth and Silicon Wafer Manufacturing, Mod. Asp. Bulk Cryst. Thin Film Prep. (2012).
[30] P. A. Basore, Defining terms for crystalline silicon solar cells, Progress in Photovoltaics: Research and Applications. 2 (1994) 177-179.
[31] J. S. Kim and T. Y. Lee, Numerical study on the effect of operating parameters on point defects in a silicon crystal during Czochralski growth. I. Rotation effect, J. Cryst. Growth 219 (2000) 205–217.
[32] Nguyen et al., Effects of different crystal-crucible rotation conditions on flow, heat, and oxygen transport during Czochralski silicon crystal growth with a cusp magnetic field, J. Cryst. Growth, accepted manuscript (2018).
[33] J. C. Chen, P. Y. Chiang, C. H. Chang, Y. Y. Teng, C. C. Huang, C. H. Chen, and C. C. Liu, Three-dimensional numerical simulation of flow, thermal and oxygen distributions for a Czochralski silicon growth with in a transverse magnetic field, J. Cryst. Growth 401 (2014) 813-819.
指導教授 陳志臣(Jyh-Chen Chen) 審核日期 2019-8-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明