博碩士論文 105323097 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:42 、訪客IP:3.145.105.105
姓名 沈明皓(Ming-Hao Shen)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 熔融沉積成型技術之模型尺寸誤差改善研究
(A Research of Error Compensation of Model Size for Fused Deposition Modeling Technology)
相關論文
★ 雙光子光致聚合微製造系統之研發★ 雙光子光致聚合五軸微製造系統之雷射加工路徑生成研究
★ 椎弓根螺釘定位演算法及導引夾治具自動化設計流程開發★ 雙光子聚合微製造技術以能量均勻橢圓體為基之曝光時間最佳化研究
★ 雙光子光致聚合微製造以弦高誤差為基之切層演算法★ 雙光子光致聚合微製造技術以螺旋線雷射掃描路徑增強微結構強度研究
★ 雙光子聚合微製造技術之三維結構 製造品質改進研究★ 利用二維多重圖像建構三維三角網格模型的生成與品質改進
★ 組織工程用冷凍成型製造系統 之自動化製作流程開發★ 自動相機校正與二維影像輪廓萃取研究
★ 基於雙光子光致聚合技術之四軸微製造系統製作高深寬比結構之研究★ 冷凍成型積層製造之機台設計與組織工程支架製作參數調校研究
★ 基於二維影像輪廓重建三維模型技術之多視角相機群組空間座標系統整合★ 應用於大型物體三維模型重建之多重二維校正板相機校正流程開發
★ 組織工程用冷凍成型積層製造之固態水支撐結構生成研究★ 聚醚醚酮之積層製造系統開發
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 熔融沉積成型(Fused Deposition Modeling, FDM)為眾多積層製造(Additive Manufacturing, AM)技術中的其中一種。FDM有著客製化等優點使其能應用於許多領域中,但本身也存在著缺點。本研究將著重於FDM之尺寸誤差缺點作改善。
直接影響尺寸誤差的決定因素在於加工路徑,亦即是沉積材料沉積的路徑。原因在於沉積材料相對於路徑點資料有著線徑之差距,而加工路徑即是模型的外型輪廓,由STL(STereoLithography)三角網格模型切層而來,且FDM為疊層的方式製造。故本研究改善尺寸誤差之主要方法,為將加工路徑作偏移,以補償線徑所造成的誤差。而加工路徑偏移的偏移量,為根據三角網格與工作平面的夾角決定。
其中本研究發展之偏移方法有兩種:等向偏移(Isotropic Offset Method, IOM)與非等向偏移(Anisotropic Offset Method, AOM)方法。其主要差別在於一個切層輪廓偏移中,IOM以等量之偏移量偏移所有輪廓之邊,而AOM則是以輪廓各自邊之不同偏移量作偏移。
本研究之實驗FDM機台為Ultimaker 3,以實心特徵與空心特徵模型驗證IOM與AOM之差別,並由Cura商用軟體進行切層處理產生之模型為對照組。實心特徵模型AOM之誤差在公差範圍內比例為81.86%,而IOM為72.08%。空心特徵模型AOM比例為89.5%,IOM為90.28%。以上公差範圍設定在±0.1mm之間,以此標準驗證之結果,在公差範圍內之比例,Cura實心特徵模型為75.59%,空心特徵模型63.89%都比AOM差。
摘要(英) Fused Deposition Modeling (FDM) is one of many Additive Manufacturing (AM). FDM has the advantages of customization so that it can be applied in many fields, but it also has its own disadvantage. This study will focus on improving the error of size for FDM.
The tool path is a factor that causes the error of size directly, and also is the path which deposition material deposit. The error of size is caused since the line width within deposition material is different to the point data of path. The tool path is the silhouette of the model, sliced from the Stereolithography (STL) consisting of triangular facets. The FDM technique is layer by layer. Hence, move the tool path to compensate the error of size caused by line width is the major method in this study, and the offset amount of tool path is decided according to the angular between triangular mesh and working plane.
There are two method for offsetting in this study: Isotropic Offset Method (IOM) and Anisotropic Offset Method (AOM). The main difference between IOM and AOM is that in a sliced section, IOM moves the edges of all contours by an equal offset amount, while AOM moves the edges by the different offset amount of the contour.
The experimental FDM machine of this study is Ultimaker 3, the difference between IOM and AOM is verified by solid feature model and hollow feature model, and the models produced by Cura commercial software is used as the control group. The ratio of error within tolerance range of the solid feature in AOM is 81.86%, while that in IOM is 72.08%. The ratio of hollow feature model in AOM and in IOM are 89.5% and 90.28%, respectively. The above tolerance range is set between ±0.1mm. The result of the standard verification reveals that the ratio of the Cura solid feature model is 75.59% and the hollow feature model is 63.89% are worse than AOM.
關鍵字(中) ★ 熔融沉積成型
★ 積層製造
★ 尺寸誤差
關鍵字(英)
論文目次 摘要 I
ABSTRACT II
誌謝 III
目錄 IV
圖目錄 VI
表目錄 X
第一章 緒論 1
1-1 前言 1
1-2 文獻回顧 2
1-3 研究動機與目的 11
1-4 論文架構 12
第二章 研究與理論說明 13
2-1 熔融沉積成型技術簡介 13
2-2 熔融沉積成型之切層與輪廓點偏移策略 18
2-3 影像處理程序介紹 25
第三章 研究方法 31
3-1 熔融沉積成型模型尺寸誤差改善流程介紹 31
3-2 熔融沉積成型列印機台製程參數分析之實驗設計 32
3-3 熔融沉積成型模型資料結構之定義與建立 34
3-4 IOM與AOM之切層建立流程 41
3-5 IOM與AOM之輪廓點偏移流程 49
3-6 熔融沉積成型之速度控制與雙噴頭設定 57
3-7 熔融沉積成型之3D掃描尺寸誤差改善結果驗證 61
第四章 實驗結果與討論 62
4-1 人機介面介紹 62
4-2 熔融沉積成型機台製程參數分析 64
4-3 IOM與AOM之沉積模擬 71
4-4 實體模型誤差改善結果 78
第五章 結論與未來展望 100
5-1 結論 100
5-2 未來展望 101
參考文獻 102
參考文獻 [1] 鄭正元、江卓培、林宗翰、林榮信、蘇威年、汪家昌、蔡明忠、賴維祥、鄭逸琳、洪基彬、鄭中緯、宋宜駿、陳怡文、賴信吉、吳貞興、許郁淞,陳宇恩,「3D列印積層製造技術與應用」,全華圖書股份有限公司,2018。
[2] F. Rengier, A. Mehndiratta, H. von Tengg-Kobligk, C. M. Zechmann, R. Unterhinninghofen, H.-U. Kauczor, F. L. Giesel, “3D printing based on imaging data: review of medical applications”, International Journal of Computer Assisted Radiology and Surgery, Vol. 5, No. 4, pp. 335-341 , 2010.
[3] T. Lieneke, G. A. O. Adam, S. Leuders, F. Knoop, S. Josupeit, P. Delfs, N. Funke, D. Zimmer, “Systematical determination of tolerances for additive manufacturing by measuring linear dimensions”, 26th Annual International Solid Freeform Fabrication Symposium, Austin, Texas, USA, pp. 371–384.
[4] T. Lieneke, V. Denzer, G. A. O. Adam, D. Zimmer, “Dimensional tolerances for additive manufacturing: Experimental investigation for Fused Deposition Modeling”, Procedia CIRP, Vol. 43, pp. 286-291, 2016.
[5] B. N. Turner, S. A. Gold, “A review of melt extrusion additive manufacturing processes: II. Materials, dimensional accuracy, and surface roughness”, Rapid Prototyping Journal, Vol. 21, No. 3, pp. 250-261, 2015.
[6] N. Saaidah Abu Bakar, M. Rizal Alkahari, H. Boejang, “Analysis on fused deposition modelling performance”, Journal of Zhejiang University-SCIENCE A, Vol. 11, No. 12, pp. 972-977, 2010.
[7] M. K. Agarwala, V. R. Jamalabad, N. A. Langrana, A. Safari Philip, J. Whalen, Stephen C. Danforth, “Structural quality of parts processed by fused deposition”, Rapid Prototyping Journal, Vol. 2, No. 4, pp. 4-19, 1996.
[8] W. Michaeli, “Extrusion Dies for Plastics and Rubber: Design and Engineering Computations”, Hanser Verlag, Munchen, 2003.
[9] A. Bellini, “Fused deposition of ceramics: a comprehensive experimental, analytical and computational study of material behavior, fabrication process and equipment design”, Ph.D. Dissertation, Drexel University, Philadelphia, PA, 2002.
[10] A. Bellini, S. Güçeri, M. Bertoldi, “Liquefier dynamics in fused deposition”, Journal of Manufacturing Science and Engineering, Vol. 126 No. 2, pp. 237-246, 2004.
[11] H.S. Ramanath, C.K. Chua, K.F. Leong, K.D. Shah, “Melt flow behaviour of poly-epsilon-caprolactone in fused deposition modelling”, Journal of Materials Science-Materials in Medicine, Vol. 19 No. 1, pp. 2541-2550, 2008.
[12] W. Han, M. A. Jafari, S. C. Danforth, A. Safari, “Tool Path-Based Deposition Planning in Fused Deposition Processes”, Journal of Manufacturing Science and Engineering, Vol. 124, No. 2, pp. 462-472, 2002.
[13] P. Anhua, X. Xingming, “Investigation on reasons inducing error and measures improving accuracy in fused deposition modeling”, Advances in Information Sciences and Service Sciences, Vol. 4 No. 1, pp. 149-157, 2012.
[14] A. Peng, “Research on the interlayer stress and warpage deformation in FDM”, 2nd International Conference on Advanced Engineering Materials and Technology, AEMT, Zhuhai, pp. 1564-1567, 2012.
[15] T.M. Wang, J.T. Xi, Y. Jin, “A model research for prototype warp deformation in the FDM process”, International Journal of Advanced Manufacturing Technology, Vol. 33 No. 11-12, pp. 1087-1096, 2007.
[16] P. Kulkarni, D. Dutta, “An accurate slicing procedure for layered manufacturing”, Computer-Aided Design, Vol. 28, No. 9, pp. 683-697, 1996.
[17] Y.Y. Chiu, Y.S. Liao, S.C. Lee, “Slicing strategies to obtain accuracy of feature relation in rapidly prototyped parts”, International Journal of Machine Tools & Manufacture, Vol. 44, No. 7-8, pp. 797-806, 2004.
[18] W. Ma, W.C. But, P. He, “NURBS-based adaptive slicing for efficient rapid prototyping”, Computer-Aided Design, Vol. 36, No. 13, pp. 1309-1325, 2004.
[19] A. Boschetto, L. Bottini, “Triangular mesh offset aiming to enhance Fused Deposition Modeling accuracy”, The International Journal of Advanced Manufacturing Technology, Vol. 80, No. 1-4, pp. 99-111, 2015.
[20] K. Tong, E. Amine Lehtihet, S. Joshi, “Parametric error modeling and software error compensation for rapid prototyping”, Rapid Prototyping Journal, Vol. 9, No. 5, pp. 301-313, 2003.
[21] K. Tong, S. Joshi, E. Amine Lehtihet, “Error compensation for fused deposition modeling (FDM) machine by correcting slice files”, Rapid Prototyping Journal, Vol. 14, No. 1, pp. 4-14, 2008.
[22] R. K. Sahu, S.S. Mahapatra, A. K. Sood, “A Study on Dimensional Accuracy of Fused Deposition Modeling (FDM) Processed Parts using Fuzzy Logic”, Journal for Manufacturing Science and Production, Vol. 13, No. 3, pp. 183-197, 2013.
[23] Q. Huang, J. Zhang, A. Sabbaghi, T. Dasgupta, “Optimal offline compensation of shape shrinkage for three-dimensional printing processes”, IIE Transactions Quality and Reliability Engineering, vol. 47, No. 5, pp. 431–441, 2015.
[24] Q. Huang, H. Nouri, K. Xu, Y. Chen, S. Sosina, T. Dasgupta, “Statistical predictive modeling and compensation of geometric deviations of three-dimensional printed products”, Journal of Manufacturing Science and Engineering, vol. 136, No. 6, pp. 061008-1–061008-10, 2014.
[25] H. Luan, Q. Huang, “Prescriptive Modeling and Compensation of In-Plane Shape Deformation for 3-D Printed Freeform Products”, IEEE Transaction on Automation Science and Engineering, vol. 14, No. 1, pp. 73–82, 2017.
[26] S.C. Park, B.K. Choi, “Uncut Free Pocketing Tool-paths Generation Using Pair-wise Offset Algorithm”, Computer-aided Design, Vol.33, No. 10, pp. 739-746, 2001.
[27] B.K. Choi, S.C. Park, “A Pair-wise Offset Algorithm for 2D Point-sequence Curve”, Computer-aided Design, Vol.31, No. 12, pp. 735-745, 1999.
[28] J. Jeong, K. Kim, ”Tool-path generation for machining free-form pockets using Voronoi diagrams”, Journal of Advanced Manufacturing Technology, Vol. 14, No. 12, pp. 876-881, 1998.
[29] H.C. Kim, S.G. Lee, M.Y. Yang, “A new offset algorithm for closed 2D lines with Islands”, International Journal of Advanced Manufacturing Technology, vol. 29, No. 11, pp. 1169-1177, 2006.
[30] W. Han, M. A. Jafari, K. Seyed, “Process Speeding Up via Deposition Planning in Fused Deposition-Based Layered Manufacturing Processes”, Rapid Prototyping Journal, Vol. 9, No. 4, pp. 212-218, 2003.
[31] C. L. Lim,快速成型原理與應用,郭啟全和鄭正元譯,高立,2004。
[32] 李鑫,邵茂官和張冰,「快速成型與製造技術發展現狀與趨勢」,北京化工大學技術文章,2008。
[33] 曾郁文,「雙光子光致聚合五軸微製造系統之雷射加工路徑生成研究」,國立中央大學,碩士論文,2014。
[34] 曾竣煌,「熔融沉積成型技術之路徑規劃與提升製造效率研究」,國立中央大學,碩士論文,2017。
[35] 鐘國亮,「影像處理與電腦視覺」,東華出版社,2015。
[36] 任宥霖,「基於二維影像輪廓重建三維模型技術之多視角相機群組空間座標系統整合」,國立中央大學,碩士論文,2017。
[37] 吳成柯等,「數位影像處理」,儒林圖書,1995。
[38] 熊郁昇,「應用於大型物體三維模型重建之多重二維校正板相機校正流程開發」,國立中央大學,碩士論文,2016。
[39] R. C. Gonzalez, R. E. Woods, “Digital Image Processing”, 3rd Edition. Prentice Hall, New York, 2007.
[40] 鄭文瑋,「在次像素精準度下的邊緣偵測演算法及其應用」,銘傳大學,碩士論文,2005。
[41] 張宸銘,「應用視訊之自動化手勢軌跡追蹤系統」,中原大學,碩士論文,2009。
[42] 彭振軒,「使用樣板比對做進出口行人數量統計」,國立中央大學,碩士論文,2006。
[43] M. Nixon, A. Aguado, “Feature Xxtraction and Image Processing”, 2nd Edition. Academic Press, UK, 2008.
[44] D. H. Douglas, T. K. Peucker, “Algorithms for the Reduction of the Number of Points required to Represent a Digitized Line or its Caricature”, Cartographica: The International Journal for Geographic Information and Geovisualization, Vol. 10, No. 2, pp. 112-122, 1973.
[45] G. Bradski, A. Kaehler, “Learning OpenCV: Computer Vision with the OpenCV Library”, O’Reilly, 2008.
[46] Z. Lin, J. Fu, Y. HE, W. Gan, “A robust 2D point-sequence curve offset algorithm with multiple islands for contour- parallel tool path”, Computer-Aided Design, Vol. 45, No. 3, pp. 657-670, 2013.
指導教授 廖昭仰 審核日期 2019-8-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明