參考文獻 |
REFERENCES
1. I. Gibson, D. W. Rosen, and B. Stucker, “Introduction and Basic Principle,” Chapter 1 in Additive Manufacturing Technologies: Rapid Prototyping to Direct Digital Manufacturing, Springer, New York, USA, 2010.
2. D. Gu, “Introduction,” Chapter 1 in Laser Additive Manufacturing of High-Performance Materials, Springer-Verlag, Berlin, Germany, 2015.
3. The Economist, A Third Industrial Revolution, http://www.economist.com/node/21552901, accessed on September 25, 2018.
4. D. Gu and B. He, “Finite Element Simulation and Experimental Investigation of Residual Stresses in Selective Laser Melted Ti–Ni Shape Memory Alloy,” Computational Materials Science, Vol. 117, pp. 221-232, 2016.
5. D. Gu, “Laser Additive Manufacturing (AM): Classification, Processing Philosophy, and Metallurgical Mechanisms,” Chapter 2 in Laser Additive Manufacturing of High-Performance Materials, Springer-Verlag, Berlin, Germany, 2015.
6. A. Simchi and H. Pohl, “Effects of Laser Sintering Processing Parameters on the Microstructure and Densification of Iron Powder,” Materials Science and Engineering: A, Vol. 359, pp. 119-128, 2003.
7. B. Dutta, S. Palaniswamy, J. Choi, L. J. Song, J. Mazumder, and FASM, “Additive Manufacturing by Direct Metal Deposition,” Advanced Materials and Processes, Vol.169, pp. 33-36, 2011.
8. M. Brandt, “Laser-aided Direct Metal Deposition of Metals and Alloys,” Chapter 1 in Laser Additive Manufacturing: Materials, Design, Technologies, and Applications, Woodhead Publishing, Cambridge, 2017.
9. S. Koric and B. G. Thomas, “Thermo-mechanical Models of Steel Solidification Based on Two Elastic Visco-plastic Constitutive Laws,” Journal of Materials Processing Technology, Vol. 197, pp. 408-418, 2008.
10. P. Mercelis and J. P. Kruth, “Residual Stresses in Selective Laser Sintering and Selective Laser Melting,” Rapid Prototyping, Vol. 12, pp. 254-265, 2006.
11. L. Parry, I. A. Ashcroft, and R. D. Wildman, “Understanding the Effect of Laser Scan Strategy on Residual Stress in Selective Laser Melting Through Thermo-mechanical Simulation,” Additive Manufacturing, Vol. 12, pp. 1-15, 2016.
12. B. Cheng, S. Shrestha, and K. Chou, “Stress and Deformation Evaluations of Scanning Strategy Effect in Selective Laser Melting,” Additive Manufacturing, Vol. 12, pp. 240-251, 2016.
13. G. Casalino, S. L. Campanelli, N. Contuzzi, and A. D. Ludovico, “Experimental Investigation and Statistical Optimization of the Selective Laser Melting Process of a Maraging Steel,” Optics & Laser Technology, Vol. 65, pp. 151-158, 2015.
14. B. Vandenbroucke and J. P. Kruth, “Selective Laser Melting of Biocompatible Metals for Rapid Manufacturing of Medical Parts,” Rapid Prototyping, Vol. 13, pp. 196-203, 2007.
15. X. Zhao, Q. Wei, B. Song, Y. Liu, X. Luo, S. Wen, and Y. Shi, “Fabrication and Characterization of AISI 420 Stainless Steel Using Selective Laser Melting,” Materials and Manufacturing Processes, Vol. 30, pp. 1283-1289, 2015.
16. K. Kempen, E. Yasa, L. Thijs, J. P. Kruth, and J. V. Humbeeck, “Microstructure and Mechanical Properties of Selective Laser Melted 18Ni-300 Steel,” Physics Procedia, Vol. 12, pp. 255-263, 2011.
17. Z. Wang, T. A. Palmer, and A. M. Beese, “Effect of Processing Parameters on Microstructure and Tensile Properties of Austenitic Stainless Steel 304L Made by Directed Energy Deposition Additive Manufacturing,” Acta Materialia, Vol. 110, pp. 226-235, 2016.
18. M. Gouge and P. Michaleris, “Microstructure and Mechanical Properties of AM Builds,” Chapter 5 in Thermo-Mechanical Modeling of Additive Manufacturing, Butterworth-Heinemann, Oxford, 2018.
19. J. Chen, L. Xue, and S-H Wang, “Experimental Studies on Process-induced Morphological Characteristics of Macro- and Microstructures in Laser Consolidated Alloys,” Journal of Materials Science, Vol. 46, pp. 5859-5875, 2011.
20. S. H. Sun, Y. Koizumi, T. Saito, K. Yamanaka, Y. P. Li, Y. Cui, and A. Chiba, “Electron Beam Additive Manufacturing of Inconel 718 Alloy Rods: Impact of Build Direction on Microstructure and High-temperature Tensile Properties,” Additive Manufacturing, Vol. 23, pp. 457-470, 2018.
21. Q. Zhang, J. Chen, Z. Zhao, H. Tan, X. Lin, and W. Huang, “Microstructure and Anisotropic Tensile Behavior of Laser Additive Manufactured TC21 Titanium Alloy,” Materials Science and Engineering: A, Vol. 673, pp. 204-212, 2016.
22. M. Kubiak, W. Piekarska, and S. Stano, “Modelling of Laser Beam Heat Source Based on Experimental Research of Yb:YAG Laser Power Distribution,” International Journal of Heat and Mass Transfer, Vol. 83, pp. 679-689, 2015.
23. A. Hussein, L. Hao, C. Yan, and R. Everson, “Finite Element Simulation of the Temperature and Stress Fields in Single Layers Built Without-support in Selective Laser Melting,” Materials and Design, Vol. 52, pp. 638-647, 2013.
24. Y. Du, X. You, F. Qiao, L. Guo, Z. Liu, “A Model for Predicting the Temperature Field During Selective Laser Melting,” Results in Physics, Vol. 12, pp. 52-60, 2019.
25. T. Amine, J. W. Newkirk, and F. Liou, “Investigation of Effect of Process Parameters on Multilayer Builds by Direct Metal Deposition,” Applied Thermal Engineering, Vol. 73, pp. 500-511, 2014.
26. E. R. Denlinger, M. Gouge, J. Irwin, and P. Michaleris, “Thermomechanical Model Development and in Situ Experimental Validation of the Laser Powder-bed Fusion Process,” Additive Manufacturing, Vol. 16, pp. 73-80, 2017.
27. C. Li, C. H. Fu, Y. B. Guo, and F. Z. Fang, “Fast Prediction and Validation of Part Distortion in Selective Laser Melting,” Procedia Manufacturing, Vol. 1, pp. 355-365, 2015.
28. K. Shah, I. U. Haq, S. A. Shah, F. U. Khan, M. T. Khan, and S. Khan, “Experimental Study of Direct Laser Deposition of Ti-6Al-4V and Inconel 718 by Using Pulsed Parameters,” The Scientific World Journal, Vol. 2014, pp. 84154901-84154906, 2014.
29. T. Mukherjee, W. Zhang, and T. DebRoy, “An Improved Prediction of Residual Stresses and Distortion in Additive Manufacturing,” Computational Materials Science, Vol. 126, pp. 360-372, 2017.
30. A. N. Isfahany, H. Saghafian, and G. Borhani, “The Effect of Heat Treatment on Mechanical Properties and Corrosion Behavior of AISI420 Martensitic Stainless Steel,” Journal of Alloys and Compounds, Vol. 509, pp. 3931-3936, 2011.
31. AZoM, Stainless Steel - Grade 420, https://www.azom.com/article.aspx?ArticleID=972, accessed on December 5, 2018.
32. MatWeb, 420 Stainless Steel, http://www.matweb.com/search/datasheettext.aspx?matguid=641544e4c9f1425390d05ae37d55440a, accessed on October 16, 2018.
33. K. R. Sriraman, S. G. S. Raman, and S. K. Seshadri, “Influence of Crystallite Size on the Hardness and Fatigue Life of Steel Samples Coated With Electrodeposited Nanocrystalline Ni–W Alloys,” Materials Letters, Vol. 61, pp. 715-718, 2007.
34. H. Bhadeshia and R. Honeycombe, “Formation of Martensite,” Chapter 5 in Steels: Microstructure and Properties, Butterworth-Heinemann, Oxford, UK, 2017.
35. N. H. van Dijk, A. M. Butt, L. Zhau, J. Sietsma, S. E. Offerman, J. P. Wright, and S. van der Zwaag, “Thermal Stability of Retained Austenite in TRIP Steels Studied by Synchrotron X-ray Diffraction During Cooling,” Acta Materialia, Vol. 53, pp. 5439-5447, 2005.
36. P. Scherrer, “Bestimmung der Grösse und der inneren Struktur von Kolloidteilchen mittels Röntgensrahlen,” Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Vol. 1918, pp. 98-100, 1918.
37. N. Takata, R. Nishida, A. Suzuki, M. Kobashi, and M. Kato, “Crystallographic Features of Microstructure in Maraging Steel Fabricated by Selective Laser Melting,” Metals, Vol. 8, pp. 440, 2018.
|