博碩士論文 106332601 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:31 、訪客IP:3.135.216.199
姓名 黃氏碧玉(Huynh Thi Bich Ngoc)  查詢紙本館藏   畢業系所 應用材料科學國際研究生碩士學位學程
論文名稱 合成BaCe0.6Zr0.2Y0.2O3-δ 和La0.6Sr0.4Co0.2Fe0.8O3-δ 奈米纖維應用於質子傳導固態氧化物燃料電池複合陰極之研究
(Study on synthetic BaCe0.6Zr0.2Y0.2O3-δ and La0.6Sr0.4Co0.2Fe0.8O3-δ nanofibers as composite cathode for proton-conducting solid oxide fuel cell)
相關論文
★ 鋅空氣電池之電解質開發★ 添加石墨烯助導劑對活性碳超高電容電極性質的影響
★ 耐高壓離子液體電解質★ 熱裂解法製備RuO2-Ta2O5/Ti電極 應用於離子液體電解液
★ 碳系超級電容器用耐高壓電解液研發★ 離子液體與碸類溶劑混合型電解液應用於鋰離子電池矽負極材料
★ 三元素摻雜LLTO混LLZO應用鋰離子電池★ 以濕蝕刻法於可撓性聚亞醯胺基板製作微通孔之研究
★ 以二氧化釩奈米粒子調變矽化鎂熱電材料之性能★ 可充電式鋁電池的 4-ethylpyridine–AlCl3電解液、規則中孔碳正極材料以及自放電特性研究
★ 釹摻雜鑭鍶鈷鐵奈米纖維應用於質子傳輸型陶瓷電化學電池空氣電極★ 於丁二腈電解質添加碳酸乙烯酯對鋰離子電池性能之影響
★ 多孔鎳集電層應用於三維微型固態超級電容器★ 二氧化錳/銀修飾奈米碳纖維應用於超級電容器
★ 氧化鎳-鑭鍶鈷鐵奈米纖維陰極電極應用於質子傳導型固態氧化物電化學電池★ 應用丁二腈基離子導體修飾PVDF-HFP 複合聚合物電解質與鋰電極界面之高穩定鋰離子電池
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 在本研究中利用一維奈米纖維作為離子電子導體電極的支撐層進行了深入研究。
採用靜電紡絲技術合成 La0.6Sr0.4Co0.2Fe0.8O3-δ 氧化物奈米纖維,用於質子傳導固態氧化
物燃料電池。本研究以溶液注率和外加電壓等參數來優化靜電紡絲的奈米纖維製程。
最佳的製程參數落在溶液注率: 0.5 mL/h、外加電壓: 12 kV、收集距離: 12cm,此參數下
可獲得直徑約 479 nm 的均質奈米纖維。BaCe0.6Zr0.2Y0.2O3-δ氧化物奈米纖維亦是透過相
同製程參數合成直徑約 225 nm 之鈣鈦礦結構奈米纖維。La0.6Sr0.4Co0.2Fe0.8O3-δ 和
BaCe0.6Zr0.2Y0.2O3-δ奈米纖維的形貌和微觀結構會於本文中進行論述。
以靜電紡絲技術合成的 La0.6Sr0.4Co0.2Fe0.8O3-δ 和 BaCe0.6Zr0.2Y0.2O3-δ 的奈米纖維以
煆燒的方式成相,再利用掃描式電子顯微鏡(SEM)和掃描穿透式電子顯微鏡(STEM)
分析煆燒後的奈米纖維的表面形態及微結構。 La0.6Sr0.4Co0.2Fe0.8O3-δ 和
BaCe0.6Zr0.2Y0.2O3-δ 的晶體結構透過 X 射線繞射進行檢測,確認兩者皆為鈣鈦礦結構。
經由顯微結構的分析,可推斷 LSCF 和 BCZY 為中溫型固態氧化物燃料電池中具有潛力的材料系統
摘要(英) In this study, mixing ionic electronic conductor electrode scaffolds form by a number of one-dimensional nanofibers are intensively investigated, obtained through electrospinning technique. The La0.6Sr0.4Co0.2Fe0.8O3-δ oxide nanofibers was synthesized by electrospinning technique for proton conducting solid oxide fuel cell. Optimization of the flow rate and applied voltage parameters for electrospinning process. The results exhibit that a solution flow rate of 0.5 mL/h, an applied voltage of 12 kV, and the distance between the needle and collector of 12cm allow to obtain tissues with an average nanofiber diameter of 479 nm. BaCe0.6Zr0.2Y0.2O3-δ oxide nanofibers were also produced in the same condition. The obtained BCZY fibers with well-developed perovskite structures were 225 nm in diameter. Morphologies and microstructure of La0.6Sr0.4Co0.2Fe0.8O3-δ and BaCe0.6Zr0.2Y0.2O3-δ nanofiber were studied in this thesis.
After electrospinning process, the La0.6Sr0.4Co0.2Fe0.8O3-δ and BaCe0.6Zr0.2Y0.2O3-δ nanofibers were calcined. The subsequent calcination processes are investigated through scanning electron microstructure (SEM) and scanning transmission electron microscopy (STEM), which shows morphologies and microstructures. The crystal structure of La0.6Sr0.4Co0.2Fe0.8O3-δ and BaCe0.6Zr0.2Y0.2O3-δ nanofibers was examined by X-ray diffraction that can be indexed as a pure perovskite-type phase of both LSCF and BCZY. The morphological chacteristics of the LSCF and BCZY calcined tissues are very promising for application in intermediate temperature solid oxide fuel cell (IT-SOFC) as copmposite cathode.
關鍵字(中) ★ 固態氧化物燃料電池
★ 奈米纖維
★ 質子傳導陰極
★ 靜電紡絲技術
關鍵字(英) ★ SOFC
★ nanofibers
★ proton-conducting
★ cathode
★ electrospinning.
論文目次 Contents
摘要 i
Abstract ii
Acknowledgment ii
Contents iii
List of tables v
List of Figures vi
List of Symbols vii
List of Abbreviations viii
1 Literature review 1
1.1 The development of the fuel cell 1
1.2 Solid oxide fuel cell (SOFC) 4
1.2.1 Principle of SOFC 4
1.2.2 Thermodynamics of SOFC [5, 7] 6
1.2.3 Structure of SOFC 9
1.3 Electrospinning 13
1.3.1 Electrospinning process 13
1.3.2 Electrospinning parameters 15
1.4 Electrochemical analysis 16
1.4.1 Ohmic polarization [2, 5, 7, 9] 17
1.4.2 Concentration polarization [5, 7, 9] 17
1.4.3 Activation polarization [2, 5, 7, 9] 17
2 Experimental procedure 19
2.1 Material synthesis 19
2.1.1 Synthesis of LSCF, BCZY nanofibers 19
2.2 Materials characterization 20
2.2.1 X-ray diffraction (XRD) 20
2.2.2 Scanning electron microscope (SEM) 20
2.2.3 Scan Transmission electron microscopy (STEM) 20
2.2.4 Measurement I-V 20
3 Result and discussion 21
3.1 Morphological and microstructure characterization of nanofibers 21
3.1.1 La0.6Sr0.4Co0.2Fe0.8O3- nanofibers 21
3.1.2 BaCe0.6Zr0.2Y0.2O3- nanofibers 25
3.2 Analysis of X-ray diffraction (XRD) of nanofibers 28
3.2.1 La0.6Sr0.4Co0.2Fe0.8O3- Nanofibers 28
3.2.2 BaCe0.6Zr0.2Y0.2O3- Nanofibers 30
4 Conclusion 35
5 References
參考文獻 5 References
[1]. K. Huang and J.B. Goodenough, "Solid Oxide Fuel Cell Technology_ Principles, Performance and Operations", 1 ed, Woodhead Publishing & CRC Press, Cambridge, UK & Boca Raton, FL, 2009.
[2]. R. P.O′Hayre, et al., "Fuel cell fundamentals", 2 ed, John Wiley & Sons, Inc., New York, 2006.
[3]. N. Mahato, et al., "Progress in material selection for solid oxide fuel cell technology: A review", Progress in Materials Science, Vol 72, pp. 141-337, 2015.
[4]. N.Q. Minh and T. Takahashi, "Science and Technology of Ceramic Fuel Cells", Elsevier Science, 1995.
[5]. S.C. Singhal and K. Kendall, "High-temperature Solid Oxide Fuel Cells_ Fundamentals, Design and Applications", 1 ed, Elsevier Science, New York, 2003.
[6]. A.B. Stambouli and E. Traversa, "Solid oxide fuel cells (SOFCs): a review of an environmentally clean and efficient source of energy", Renewable and Sustainable Energy Reviews, Vol 6(5), pp. 433-455, 2002.
[7]. S.M. Haile, "Fuel cell materials and components", Acta Materialia, Vol 51(19), pp. 5981-6000, 2003.
[8]. J.M. Andujar and F. Segura, "Fuel cells: History and updating. A walk along two centuries", Renewable & Sustainable Energy Reviews, Vol 13(9), pp. 2309-2322, 2009.
[9]. I. EG&G Technical Services, "Fuel Cell Handbook", U.S. Department of Energy Office of Fossil Energy National Energy Technology Laboratory, Morgantown, West Virginia, 2005.
[10]. M. Ni, "The effect of electrolyte type on performance of solid oxide fuel cells running on hydrocarbon fuels", International Journal of Hydrogen Energy, Vol 38(6), pp. 2846-2858, 2013.
[11]. N.L.R.M. Rashid, et al., "Review on zirconate-cerate-based electrolytes for proton-conducting solid oxide fuel cell", Ceramics International, Vol 45(6), pp. 6605-6615, 2019.
[12]. M. Ni, M.K.H. Leung, and D.Y.C. Leung, "Mathematical Modelling of Proton-Conducting Solid Oxide Fuel Cells and Comparison with Oxygen-Ion-Conducting Counterpart", Fuel Cells, Vol 7(4), pp. 269-278, 2007.
[13]. S. Hossain, et al., "A review on proton conducting electrolytes for clean energy and intermediate temperature-solid oxide fuel cells", Renewable and Sustainable Energy Reviews, Vol 79, pp. 750-764, 2017.
[14]. J.F. Basbus, et al., "A high temperature study on thermodynamic, thermal expansion and electrical properties of BaCe 0.4 Zr 0.4 Y 0.2 O 3−δ proton conductor", Journal of Power Sources, Vol 329, pp. 262-267, 2016.
[15]. M. Hakim, et al., "Enhanced durability of a proton conducting oxide fuel cell with a purified yttrium-doped barium zirconate-cerate electrolyte", Journal of Power Sources, Vol 278, pp. 320-324, 2015.
[16]. P. Sawant, et al., "Synthesis, stability and conductivity of BaCe0.8−xZrxY0.2O3−δ as electrolyte for proton conducting SOFC", International Journal of Hydrogen Energy, Vol 37(4), pp. 3848-3856, 2012.
[17]. R.M. Ormerod, "Solid oxide fuel cells", Chemical Society Reviews, Vol 32(1), pp. 17-28, 2003.
[18]. R. Lan and S. Tao, "Materials for High-Temperature Fuel Cells", Wiley-VCH Verlag GmbH & Co.KgaA, Germany, 2013.
[19]. L. Gui, et al., "Enhanced sinterability and conductivity of BaZr0.3Ce0.5Y0.2O3−δ by addition of bismuth oxide for proton conducting solid oxide fuel cells", Journal of Power Sources, Vol 301, pp. 369-375, 2016.
[20]. T. Ishihara, "Perovskite Oxide for Solid Oxide Fuel Cells", 1 ed, Springer US, Boston, MA, 2009.
[21]. C. Sun, R. Hui, and J. Roller, "Cathode materials for solid oxide fuel cells: a review", Journal of Solid State Electrochemistry, Vol 14(7), pp. 1125-1144, 2009.
[22]. R. Peng, et al., "Cathode processes and materials for solid oxide fuel cells with proton conductors as electrolytes", Journal of Materials Chemistry, Vol 20(30), 2010.
[23]. Likun Pan and G. Zhu, "Perovskite Materials: Synthesis, Characterisation, Properties, and Applications", ExLi4EvA, 2017.
[24]. S.T. Aruna, et al., "Electrospinning in solid oxide fuel cells – A review", Renewable and Sustainable Energy Reviews, Vol 67, pp. 673-682, 2017.
[25]. S. Ramakrishna, et al., "An Introduction to Electrospinning and Nanofibers", World Scientific Publishing Co. Pte. Ltd., Singapore, 2005.
[26]. S. Cavaliere, "Electrospinning for advanced energy and environmental applications", CRC Press, Boca Raton, 2016.
[27]. P.S. Kumar, et al., "Hierarchical electrospun nanofibers for energy harvesting, production and environmental remediation", Energy Environ. Sci., Vol 7(10), pp. 3192-3222, 2014.
[28]. H. Wu, et al., "Electrospinning of ceramic nanofibers: Fabrication, assembly and applications", Journal of Advanced Ceramics, Vol 1(1), pp. 2-23, 2012.
[29]. Y. Chen, et al., "A Highly Efficient and Robust Nanofiber Cathode for Solid Oxide Fuel Cells", Advanced Energy Materials, Vol 7(6), 2017.
[30]. N. Bhardwaj and S.C. Kundu, "Electrospinning: a fascinating fiber fabrication technique", Biotechnol Adv, Vol 28(3), pp. 325-47, 2010.
[31]. N. Nasani, et al., "Synthesis and conductivity of Ba(Ce,Zr,Y)O3−δ electrolytes for PCFCs by new nitrate-free combustion method", International Journal of Hydrogen Energy, Vol 38(20), pp. 8461-8470, 2013.
[32]. J.S. Hardy, et al., "Lattice expansion of LSCF-6428 cathodes measured by in situ XRD during SOFC operation", Journal of Power Sources, Vol 198, pp. 76-82, 2012.
[33]. X. Chen and S.P. Jiang, "Highly active and stable (La0.24Sr0.16Ba0.6)(Co0.5Fe0.44Nb0.06)O3−δ (LSBCFN) cathodes for solid oxide fuel cells prepared by a novel mixing synthesis method", Journal of Materials Chemistry A, Vol 1(15), pp. 4871, 2013.
[34]. S.U. Dubal, et al., "Proton conducting BaCe0.7Zr0.1Y0.2O2.9 thin films by spray deposition for solid oxide fuel cell", Applied Surface Science, Vol 324, pp. 871-876, 2015.
[35]. Y. Yamazaki, R. Hernandez-Sanchez, and S.M. Haile, "High Total Proton Conductivity in Large-Grained Yttrium-Doped Barium Zirconate", Chemistry of Materials, Vol 21(13), pp. 2755-2762, 2009.
指導教授 李勝偉(Sheng-Wei Lee) 審核日期 2019-8-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明