博碩士論文 104326004 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:47 、訪客IP:18.224.4.65
姓名 邱鈞煦(Jyun-Syu Ciou)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 2016-2017年鹿林山長程傳輸氣膠特性分析
(The characteristics of the long-range transportation aerosol at Mt. Lulin in 2016 and 2017)
相關論文
★ 台灣北部地區大氣氣膠有機酸特性★ 北部氣膠超級測站近七年氣膠特性變化探討
★ 鹿林山背景大氣及受生質燃燒事件影響的氣膠化學特性★ 鹿林山大氣氣膠含水量探討及乾氣膠光學特性
★ 中南半島近污染源生質燃燒氣膠特性及其傳輸演化與東沙島氣膠特性★ 鹿林山大氣背景站不同氣團氣膠光學特性
★ 台灣細懸浮微粒(PM2.5)空氣品質標準建置研究★ 台灣都市地區細懸浮微粒(PM2.5)手動採樣分析探討
★ 2011年不同來源氣團鹿林山氣膠水溶性無機離子動態變化★ 台灣都會區細懸浮微粒(PM2.5)濃度變化影響因子、污染來源及其對大氣能見度影響
★ 2012年越南山羅高地生質燃燒期間氣膠特性及2003-2012年台灣鹿林山氣膠來源解析★ 2011年生質燃燒期間越南山羅高地和台灣鹿林山氣膠特性
★ 2013年7SEAS國際觀測對北越南山羅生質燃燒期間氣膠化學特性及來源鑑定★ 中南半島近生質燃燒源區與傳輸下風鹿林山氣膠特性及來源解析
★ 台灣北、中′南部細懸浮微粒(PM2.5)儀器比對成分分析與來源推估★ 2013年春季鹿林山和夏季龍潭氣膠水溶性離子短時間動態變化特性
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本文於2016年秋季在台灣竹子山(海拔1,103公尺)、鹿林山(海拔2,862公尺),以及2017年春季在台灣鹿林山進行PM2.5化學特性分析,目的是瞭解秋季竹子山和鹿林山氣膠受東北季風以及春季鹿林山受中南半島生質燃燒煙團長程傳輸的影響。
2016年秋季期間竹子山受到了台北都會區以及境外傳輸影響,PM2.5質量濃度平均為7.5 ± 8.2 μg m-3,於污染事件時甚至高達31.1 μg m-3;相對地,鹿林山PM2.5質量濃度平均為2.7 ± 1.2 μg m-3,各樣本濃度變化不明顯,有山谷風現象時濃度有些許提升,水溶性離子濃度提升較為顯著,NH4+與SO42-分別增加了377%與282%。
2017年春季期間PM2.5與PM10質量濃度分別為8.6 ± 4.8 以及12.7 ± 6.3 μg m-3,PM2.5大約占了PM10的70%。氣膠水溶性離子不論PM2.5或PM10都以SO42-、NO3-與NH4+為主要成分。PM2.5與PM10碳成分則是以OC3最為主要,但OC4成長增加最為明顯。與春季背景相比,PM2.5水溶性離子NH4+與SO42-分別增加了136%與89%,OC3與OC4分別增加了220%與250%。春季鹿林山氣膠特性主要受到藉由盛行西風長程傳輸來自中南半島生質燃燒煙團以及發生頻率較低但來自中國北方的氣團影響。
本文利用revised IMPROVE方法計算出大氣消光係數(bext),並與鹿林山春季監測的大氣消光係數進行比較,廻歸判定係數非常好(R2>0.85),在PM2.5質量濃度低時,空氣分子和有機物對bext有重要貢獻,隨著PM2.5濃度的上升,在高污染期間(NH4)2SO4與NH4NO3對bext貢獻顯著。PM2.5質量濃度較低時(≦5 μg m-3)相對濕度對的影響並不是十分顯著,隨著PM2.5質量濃度增加,相對濕度帶來的影響變得明顯。當PM2.5從10到20.9 μg m-3時,revised IMPROVE模式計算與儀器量測的能見度有不錯的線性關係 (R2=0.70),但IMPROVE模式計算值高出許多。整體來說,本文展現了從背景到污染事件的大氣成分光學效應變化。
摘要(英) This study collected PM2.5 for chemical characterization at Mt. Bamboo (25.18°N, 121.53°E, 1,103 m a.s.l.) and Mt. Lulin (23.47°N, 120.87°E, 2,862 m a.s.l.) in autumn 2016, and at Mt. Lulin in spring 2017 in Taiwan. The aims of this study are to investigate the influences of the northeast monsoon on atmospheric aerosols at Mt. Bamboo and Mt. Lulin in autumn and that of the transported biomass-burning (BB) smoke from Indochina peninsula at Mt. Luin in spring.
In autumn 2016, PM2.5 mass concentrations were with an average of 7.5 ± 8.2 μg m-3 and as high as 31.1 μg m-3 in a pollution event under the combined effects of Taipei metropolis and transboundary transport. In contrast, PM2.5 mass concentrations were with a mean value of 2.7 ± 1.2 μg m-3 at Mt. Lulin with relatively less variation except for the concentration rise when the mountain-valley wind was prominent. The rise of water-soluble inorganic ions (WSIIs) was significant, e.g., the increases of NH4+ and SO42- were 377% and 282%, respectively.
In spring 2017, the mean values of PM2.5 and PM10 mass concentrations were at 8.6 ± 4.8 μg m-3 and 12.7 ± 6.3 μg m-3, respectively; the proportion of PM2.5 in PM10 was around 70%. For WSIIs, SO42-, NO3-, and NH4+ were major components in either PM2.5 or PM10. For carbonaceous content, OC3 (evolved between 281℃ and 480℃) was the most abundant fraction in PM2.5 and PM10, but OC4 (evolved between 481℃ and 580℃) increased the most. In contrast to spring background air, PM2.5 SO42- and NH4+ increased 136% and 89%, respectively; while the increases of OC3 and OC4 were 220% and 250%, respectively. The aerosol properties at Mt. Lulin were mainly under the influences of BB smoke from Indochina peninsula via prevailing westerly as well as less frequent air masses from North China in spring.
For the assessment of atmospheric optics, this study adopted the revised IMPROVE algorithm to compute light-extinction coefficients (bext) of the atmospheric species. The computed bext values agreed well (R2>0.85) with the observed ones at Mt. Lulin in spring. Raleigh scattering and organic species influenced atmospheric optics significantly in low PM2.5 levels; however, (NH4)2SO4 and NH4NO3 gained its dominance in the high PM2.5 pollution events. It is worthwhile to note that the relative humidity effect was not significant for low PM2.5 levels (≦5 μg m-3), but became prominent in higher PM2.5 levels. For the range of PM2.5 levels from 10 to 20.9 μg m-3, the visibility computed from the revised IMPROVE algorithm had a linear fashion (R2=0.70) with the measured visibility, although the computed values tended to exceed the observed values significantly. Overall, this study demonstrated that the optical effects of atmospheric species varying from atmospheric background condition to pollution events.
關鍵字(中) ★ 高山氣膠
★ 生質燃燒氣膠
★ 長程傳輸氣膠特性
關鍵字(英) ★ Mountain aerosol
★ Biomass burning aerosol
★ Aerosol characteristics from long-range transport
論文目次 目錄
摘要 I
Abstract II
致謝 III
目錄 IV
圖目錄 VII
表目錄 IX
第一章 前言 1
1.1 研究緣起 1
1.2 研究目的 2
第二章 文獻回顧 3
2.1 生質燃燒 3
2.1.1 東南亞生質燃燒 3
2.1.2 生質燃燒氣膠特性 4
2.2 歷年研究成果 12
2.2.1 鹿林山氣流軌跡分類 12
2.2.2 生質燃燒與非生質燃燒旺盛時期氣膠成分 12
2.2.3 有機碳採樣誤差 13
2.2.4 水溶性無機離子濾紙採樣誤差 15
2.3 氣膠長程傳輸 16
2.3.1氣膠傳輸至竹子山 17
2.3.2氣膠傳輸至鹿林山 17
第三章 研究方法 19
3.1 研究架構 19
3.2採樣測站 19
3.2.1 鹿林山空氣品質背景監測站 20
3.2.2竹子山測站 22
3.3 採樣觀測儀器 23
3.3.1 R&P Model 3500自組式蜂巢式套管化學採樣器 23
3.3.2 高量採樣器 25
3.4 採樣濾紙選擇與前處理程序 26
3.4.1 儀器與濾紙配置 26
3.4.2 濾紙前處理 27
3.4.3 樣本運送與保存 28
3.5 樣本分析方法 29
3.5.1 樣本質量濃度秤重 29
3.5.2 氣膠碳成分分析 30
3.5.3氣膠水溶性離子分析 33
3.5.4 氣膠微粒揮發成分補償方法 36
3.5.5 氣膠水可溶有機碳分析 39
3.5.6 氣膠脫水單醣化合物 41
3.5.7 氣膠二元酸分析 43
3.5.8 氣膠腐植質分析 45
3.5.9 量測儀器QAQC 48
3.6 氣膠水溶性離子非海洋來源 49
3.7 NOAA氣膠觀測系統 49
3.7.1積分式散光儀(Integrating Nephelometer) 50
3.7.2微粒碳吸收光度計(PSAP) 53
3.8 環保署鹿林山測站其他自動觀測儀器 57
3.9 判別生質燃燒發生的方法 58
3.9.1 美國太空總署(NASA)自然災害網 58
3.9.2 美國太空總署全球火災監測中心(GFMC) 59
3.9.3 氣流軌跡模式(NOAA HYSPLIT) 59
3.10 Revised IMPROVE 計算消光係數 60
第四章 結果與討論 63
4.1 2016年秋季採樣 63
4.1.1秋季採樣氣膠特性 63
4.1.2東北季風傳輸 66
4.1.3 秋季鹿林山山谷風 70
4.1.4 秋季竹子山高濃度事件 74
4.2 2017年春季採樣 80
4.2.1 春季採樣氣膠特性 80
4.2.2 春季氣流軌跡分類 85
4.2.3 春季長程傳輸事件 91
4.3鹿林山採樣彙整 97
4.4 IMPROVE模式推估大氣消光係數 105
4.4.1 IMPROVE模式推估大氣消光係數(bext)與貢獻因子 106
4.4.2 IMPROVE模式推估大氣能見度 108
第五章 結論 112
第六章 參考文獻 116
附錄一 逆推軌跡 123
附錄二 補充表格 166
附錄三 口試委員意見回復 168
參考文獻 Andreae, M.O., 1983. Soot carbon and excess fine potassium: long-range transport of combustion-derived aerosols. Science 220, 1148-1151.
Bhardwaj, P., Naja, M., Kumar, R., Chandola, H.C., 2016. Seasonal, interannual, and long-term variabilities in biomass burning activity over South Asia. Environ Sci Pollut Res Int 23, 4397-4410.
Cao, J., Lee, S., Ho, K., Fung, K., Chow, J.C., Watson, J.G., 2006. Characterization of roadside fine particulate carbon and its eight fractions in Hong Kong. Aerosol Air Qual. Res 6.
Cao, J., Wu, F., Chow, J., Lee, S., Li, Y., Chen, S., An, Z., Fung, K., Watson, J., Zhu, C., 2005. Characterization and source apportionment of atmospheric organic and elemental carbon during fall and winter of 2003 in Xi′an, China. Atmospheric Chemistry and Physics 5, 3127-3137.
Cappiello, A., De Simoni, E., Fiorucci, C., Mangani, F., Palma, P., Trufelli, H., Decesari, S., Facchini, M.C., Fuzzi, S., 2003. Molecular characterization of the water-soluble organic compounds in fogwater by ESIMS/MS. Environmental Science & Technology 37, 1229-1240.
Cheng, Y., Duan, F.-k., He, K.-b., Du, Z.-y., Zheng, M., Ma, Y.-l., 2012. Sampling artifacts of organic and inorganic aerosol: Implications for the speciation measurement of particulate matter. Atmos. Environ. 55, 229-233.
Cheng, Y., Engling, G., He, K.B., Duan, F.K., Ma, Y.L., Du, Z.Y., Liu, J.M., Zheng, M., Weber, R.J., 2013. Biomass burning contribution to Beijing aerosol. Atmos. Chem. Phys. 13, 7765-7781.
Chow, J.C., Watson, J.G., Kuhns, H., Etyemezian, V., Lowenthal, D.H., Crow, D., Kohl, S.D., Engelbrecht, J.P., Green, M.C., 2004. Source profiles for industrial, mobile, and area sources in the Big Bend Regional Aerosol Visibility and Observational study. Chemosphere 54, 185-208.
Chow, J.C., Watson, J.G., Lowenthal, D.H., Magliano, K.L., 2008. Size-resolved aerosol chemical concentrations at rural and urban sites in Central California, USA. Atmos. Res. 90, 243-252.
Chow, J.C., Watson, J.G., Pritchett, L.C., Pierson, W.R., Frazier, C.A., Purcell, R.G., 1993. The dri thermal/optical reflectance carbon analysis system: description, evaluation and applications in U.S. Air quality studies. Atmospheric Environment. Part A. General Topics 27, 1185-1201.
Christopher, D.E., Kimberly, E.B., 1996. Survey of fires in Southeast Asia and India during 1987. In: Levine, J. (Ed.), Global Biomass burning, vol. 2. MIT Press, Cambridge, MA, pp., 663-670.
Chuang, M.-T., Chou, C.C.K., Sopajaree, K., Lin, N.-H., Wang, J.-L., Sheu, G.-R., Chang, Y.-J., Lee, C.-T., 2013. Characterization of aerosol chemical properties from near-source biomass burning in the northern Indochina during 7-SEAS/Dongsha experiment. Atmos. Environ. 78, 72-81.
Chuang, M.-T., Fu, J.S., Lin, N.-H., Lee, C.-T., Gao, Y., Wang, S.-H., Sheu, G.-R., Hsiao, T.-C., Wang, J.-L., Yen, M.-C., 2015. Simulating the transport and chemical evolution of biomass burning pollutants originating from Southeast Asia during 7-SEAS/2010 Dongsha experiment. Atmos. Environ. 112, 294-305.
Chuang, M.-T., Lee, C.-T., Chou, C.C.K., Engling, G., Chang, S.-Y., Chang, S.-C., Sheu, G.-R., Lin, N.-H., Sopajaree, K., Chang, Y.-J., Hong, G.-J., 2016. Aerosol transport from Chiang Mai, Thailand to Mt. Lulin, Taiwan – Implication of aerosol aging during long-range transport. Atmos. Environ. 137, 101-112.
Chuang, M.-T., Lee, C.-T., Chou, C.C.K., Lin, N.-H., Sheu, G.-R., Wang, J.-L., Chang, S.-C., Wang, S.-H., Chi, K.H., Young, C.-Y., Huang, H., Chen, H.-W., Weng, G.-H., Lai, S.-Y., Hsu, S.-P., Chang, Y.-J., Chang, J.-H., Wu, X.-C., 2014. Carbonaceous aerosols in the air masses transported from Indochina to Taiwan: Long-term observation at Mt. Lulin. Atmos. Environ. 89, 507-516.
Decesari, S., Facchini, M., Matta, E., Mircea, M., Fuzzi, S., Chughtai, A., Smith, D., 2002. Water soluble organic compounds formed by oxidation of soot. Atmos. Environ. 36, 1827-1832.
Fraser, M.P., Lakshmanan, K., 2000. Using Levoglucosan as a Molecular Marker for the Long-Range Transport of Biomass Combustion Aerosols. Environmental Science & Technology 34, 4560-4564.
Gao, S., Hegg, D.A., Hobbs, P.V., Kirchstetter, T.W., Magi, B.I., Sadilek, M., 2003. Water‐soluble organic components in aerosols associated with savanna fires in southern Africa: Identification, evolution, and distribution. Journal of Geophysical Research: Atmospheres (1984–2012) 108.
Gelencsér, A., 2005. Carbonaceous aerosol. Springer Science & Business Media.
Graham, B., Mayol-Bracero, O.L., Guyon, P., Roberts, G.C., Decesari, S., Facchini, M.C., Artaxo, P., Maenhaut, W., Koll, P., Andreae, M.O., 2002. Water-soluble organic compounds in biomass burning aerosols over Amazonia - 1. Characterization by NMR and GC-MS. J. Geophys. Res.-Atmos. 107, 16.
Gustafsson, Ö., Kruså, M., Zencak, Z., Sheesley, R.J., Granat, L., Engström, E., Praveen, P., Rao, P., Leck, C., Rodhe, H., 2009. Brown clouds over South Asia: biomass or fossil fuel combustion? Science 323, 495-498.
Han, Y., Cao, J., Lee, S., Ho, K., An, Z., 2010. Different characteristics of char and soot in the atmosphere and their ratio as an indicator for source identification in Xi′an, China. Atmospheric Chemistry and Physics 10, 595-607.
Hennigan, C.J., Sullivan, A.P., Collett, J.L., Robinson, A.L., 2010. Levoglucosan stability in biomass burning particles exposed to hydroxyl radicals. Geophysical Research Letters 37.
Ho, K.F., Lee, S.C., Cao, J.J., Kawamura, K., Watanabe, T., Cheng, Y., Chow, J.C., 2006. Dicarboxylic acids, ketocarboxylic acids and dicarbonyls in the urban roadside area of Hong Kong. Atmos. Environ. 40, 3030-3040.
Hoffmann, D., Tilgner, A., Iinuma, Y., Herrmann, H., 2010. Atmospheric Stability of Levoglucosan: A Detailed Laboratory and Modeling Study. Environmental Science & Technology 44, 694-699.
Hoffmann, T., Odum, J.R., Bowman, F., Collins, D., Klockow, D., Flagan, R.C., Seinfeld, J.H., 1997. Formation of organic aerosols from the oxidation of biogenic hydrocarbons. Journal of Atmospheric Chemistry 26, 189-222.
Holmes, B.J., Petrucci, G.A., 2007. Oligomerization of levoglucosan by Fenton chemistry in proxies of biomass burning aerosols. Journal of Atmospheric Chemistry 58, 151-166.
Hsieh, L.-Y., Chen, C.-L., Wan, M.-W., Tsai, C.-H., Tsai, Y.I., 2008. Speciation and temporal characterization of dicarboxylic acids in PM2.5 during a PM episode and a period of non-episodic pollution. Atmos. Environ. 42, 6836-6850.
Hsieh, L.-Y., Kuo, S.-C., Chen, C.-L., Tsai, Y.I., 2009. Size distributions of nano/micron dicarboxylic acids and inorganic ions in suburban PM episode and non-episodic aerosol. Atmos. Environ. 43, 4396-4406.
Huntzicker, J.J., Johnson, R.L., Shah, J.J., Cary, R.A., 1982. Analysis of Organic and Elemental Carbon in Ambient Aerosols by a Thermal-Optical Method, in: Wolff, G., Klimisch, R. (Eds.), Particulate Carbon. Springer US, pp. 79-88.
Jang, M., Czoschke, N.M., Lee, S., Kamens, R.M., 2002. Heterogeneous Atmospheric
Aerosol Production by Acid-
Catalyzed Particle-Phase Reactions. SCIENCE.
Kawamura, K., Gagosian, R.B., 1987. Implications of ω-oxocarboxylic acids in the remote marine atmosphere for photo-oxidation of unsaturated fatty acids. Nature.
Krivácsy, Z., Hoffer, A., Sárvári, Z., Temesi, D., Baltensperger, U., Nyeki, S., Weingartner, E., Kleefeld, S., Jennings, S.G., 2001. Role of organic and black carbon in the chemical composition of atmospheric aerosol at European background sites. Atmos. Environ. 35, 6231-6244.
Krivácsy, Z., Kiss, G., Ceburnis, D., Jennings, G., Maenhaut, W., Salma, I., Shooter, D., 2008. Study of water-soluble atmospheric humic matter in urban and marine environments. Atmos. Res. 87, 1-12.
Kundu, S., Kawamura, K., Andreae, T., Hoffer, A., Andreae, M., 2010. Molecular distributions of dicarboxylic acids, ketocarboxylic acids and α-dicarbonyls in biomass burning aerosols: implications for photochemical production and degradation in smoke layers. Atmospheric Chemistry and Physics 10, 2209-2225.
Lee, C.-T., Chuang, M.-T., Lin, N.-H., Wang, J.-L., Sheu, G.-R., Chang, S.-C., Wang, S.-H., Huang, H., Chen, H.-W., Liu, Y.-L., 2011a. The enhancement of PM 2.5 mass and water-soluble ions of biosmoke transported from Southeast Asia over the Mountain Lulin site in Taiwan. Atmos. Environ. 45, 5784-5794.
Lee, C.-T., Chuang, M.-T., Lin, N.-H., Wang, J.-L., Sheu, G.-R., Chang, S.-C., Wang, S.-H., Huang, H., Chen, H.-W., Liu, Y.-L., Weng, G.-H., Lai, H.-Y., Hsu, S.-P., 2011b. The enhancement of PM2.5 mass and water-soluble ions of biosmoke transported from Southeast Asia over the Mountain Lulin site in Taiwan. Atmos. Environ. 45, 5784-5794.
Lin, L.-F., Lee, W.-J., Li, H.-W., Wang, M.-S., Chang-Chien, G.-P., 2007. Characterization and inventory of PCDD/F emissions from coal-fired power plants and other sources in Taiwan. Chemosphere 68, 1642-1649.
Mazurek, M.A., Cass, G.R., Simoneit, B.R.T., 1991. BIOLOGICAL INPUT TO VISIBILITY-REDUCING AEROSOL-PARTICLES IN THE REMOTE ARID SOUTHWESTERN UNITED-STATES. Environmental Science & Technology 25, 684-694.
Narukawa, M., Kawamura, K., Takeuchi, N., Nakajima, T., 1999. Distribution of dicarboxylic acids and carbon isotopic compositions in aerosols from 1997 Indonesian forest fires. Geophysical Research Letters 26, 3101-3104.
Otto, A., Gondokusumo, R., Simpson, M.J., 2006. Characterization and quantification of biomarkers from biomass burning at a recent wildfire site in Northern Alberta, Canada. Appl. Geochem. 21, 166-183.
Ou Yang, C.-F., Lin, N.-H., Sheu, G.-R., Lee, C.-T., Wang, J.-L., 2012. Seasonal and diurnal variations of ozone at a high-altitude mountain baseline station in East Asia. Atmos. Environ. 46, 279-288.
Pani, S.K., Lee, C.-T., Chou, C.C.K., Shimada, K., Hatakeyama, S., Takami, A., Wang, S.-H., Lin, N.-H., 2017. Chemical Characterization of Wintertime Aerosols over Islands and Mountains in East Asia: Impacts of the Continental Asian Outflow. Aerosol and Air Quality Research 17, 3006-3036.
Pathak, R.K., Wang, T., Ho, K.F., Lee, S.C., 2011. Characteristics of summertime PM2.5 organic and elemental carbon in four major Chinese cities: Implications of high acidity for water-soluble organic carbon (WSOC). Atmos. Environ. 45, 318-325.
Pio, C., Legrand, M., Alves, C., Oliveira, T., Afonso, J., Caseiro, A., Puxbaum, H., Sánchez-Ochoa, A., Gelencsér, A., 2008. Chemical composition of atmospheric aerosols during the 2003 summer intense forest fire period. Atmos. Environ. 42, 7530-7543.
Rastogi, N., Singh, A., Sarin, M.M., Singh, D., 2016. Temporal variability of primary and secondary aerosols over northern India: Impact of biomass burning emissions. Atmos. Environ. 125, 396-403.
Samburova, V., Szidat, S., Hueglin, C., Fisseha, R., Baltensperger, U., Zenobi, R., Kalberer, M., 2005. Seasonal variation of high‐molecular‐weight compounds in the water‐soluble fraction of organic urban aerosols. Journal of Geophysical Research: Atmospheres (1984–2012) 110.
Sarigiannis, D.Α., Karakitsios, S.P., Kermenidou, M.V., 2015. Health impact and monetary cost of exposure to particulate matter emitted from biomass burning in large cities. Science of The Total Environment 524–525, 319-330.
Schauer, J., N, M.I.C.H.A.E.L.J.K.L.E.E.M.A., S, G.L.E.N.R.C.A.S., T, B.E.R.N.D.R.T.S.I.M.O.N.E.I., 1999. Measurement of Emissions from Air
Pollution Sources. 1. C1 through C29
Organic Compounds from Meat
Charbroiling. Environ. Sci. Technol.
Schkolnik, G., Falkovich, A.H., Rudich, Y., Maenhaut, W., Artaxo, P., 2005. New Analytical Method for the Determination of Levoglucosan, Polyhydroxy Compounds, and 2-Methylerythritol and Its Application to Smoke and Rainwater Samples. Environmental Science & Technology 39, 2744-2752.
Sheu, G.-R., Lin, N.-H., 2011. Mercury in cloud water collected on Mt. Bamboo in northern Taiwan during the northeast monsoon season. Atmos. Environ. 45, 4454-4462.
Simoneit, B.R.T., 2002. Biomass burning - A review of organic tracers for smoke from incomplete combustion. Appl. Geochem. 17, 129-162.
Sioutas, C., Wang, P., Ferguson, S., Koutrakis, P., Mulik, J.D., 1996. Laboratory and field evaluation of an improved glass honeycomb denuder/filter pack sampler. Atmospheric Environment 30, 885-895.
Stein, A., Draxler, R., Rolph, G., Stunder, B., Cohen, M., Ngan, F., 2015. NOAA’s HYSPLIT atmospheric transport and dispersion modeling system. Bulletin of the American Meteorological Society 96, 2059-2077.
Stone, E.A., Schauer, J.J., Pradhan, B.B., Dangol, P.M., Habib, G., Venkataraman, C., Ramanathan, V., 2010. Characterization of emissions from South Asian biofuels and application to source apportionment of carbonaceous aerosol in the Himalayas. Journal of Geophysical Research: Atmospheres (1984–2012) 115.
Streets, D., Yarber, K., Woo, J.H., Carmichael, G., 2003. Biomass burning in Asia: Annual and seasonal estimates and atmospheric emissions. Global Biogeochemical Cycles 17.
Wang, G., Kawamura, K., Watanabe, T., Lee, S., Ho, K., Cao, J., 2006. High loadings and source strengths of organic aerosols in China. Geophysical Research Letters 33.
Wang, H., Tian, M., Li, X., Chang, Q., Cao, J., Yang, F., Ma, Y., He, K., 2015. Chemical Composition and Light Extinction Contribution of PM2.5 in Urban Beijing for a 1-Year Period. Aerosol and Air Quality Research 15, 2200-2211.
Wang, Q., Shao, M., Liu, Y., William, K., Paul, G., Li, X., Liu, Y., Lu, S., 2007. Impact of biomass burning on urban air quality estimated by organic tracers: Guangzhou and Beijing as cases. Atmos. Environ. 41, 8380-8390.
余政哲, 2010. 鹿林山大氣氣膠含水量探討及
乾氣膠光學特性. 國立中央大學環境工程研究所碩士論文.
侯雅馨, 2008. 大氣氣膠腐植質含量分析及氣膠成分對氣膠含水量影響的研究. 國立中央大學環境工程研究所碩士論文.
莊仲霆, 2016. 2015年中南半島近生質燃燒源與煙團傳輸氣膠特性解析. 國立中央大學環境工程研究所碩士論文.
陳聖中, 2012. 台灣都市地區細懸浮微粒 (PM2.5) 手動採樣分析探討. 國立中央大學環境工程研究所碩士論文.
陳彥銘, 2018. 2016~2017年東亞背景、生質燃燒傳輸及高山雲霧水氣膠水溶性離子短時間變化. 國立中央大學環境工程研究所碩士論文.
陳建安, 2018. 2016年鹿林山生質燃燒煙團傳輸氣膠特性解析. 國立中央大學環境工程研究所碩士論文.
指導教授 李崇德(Chung-Te Lee) 審核日期 2019-7-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明