博碩士論文 103385601 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:154 、訪客IP:18.191.5.239
姓名 貝畢凡(Bevan Annuerine Badjie)  查詢紙本館藏   畢業系所 營建管理研究所
論文名稱 運用PSO-SIP演算法辨識工程公司財務比率與表現之間的相關性
(Exploring financial ratios combining PSO(SIP)-based Intelligence systems and statistical techniques(PSOISST) to identify variables affecting a construction company’s performance.)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 金融危機多年來引發了人們的關注,其對公司的影響同時震盪了全球經濟。在公司的財務決策中,其中一項非常重要的研究議題是如何準確辨識導致公司失敗的特徵。本研究使用了來自55家建築公司十六年的3190份有效財務報告,同時應用了25種財務比率,而這些比率都有著至關重要的作用。同時,本研究也提出了一種PSO-SIP演算法,將高維度的數據可視化為二維分布圖,在投影出來的分布圖中可以直接分析每個資料點群集中的固有結構,這個演算法亦可進一步結合傳統分析財務比率的方法,為決策者提供可視化圖像來為未來問題做出正確決策。此外,可視化的群集也可以協助決策者更容易理解財務比率之間的關係,並加強對它們之間相關性的研究。本研究的目的是從蒐集的資料中找出失敗的公司類別中導致公司面臨財務困境的因素,同時找出導致非失敗的公司類別成長的原因。為了實現這項研究目的,該演算法與PCA結合以確定每個特徵的權重,並在財務比率內調整和查找它們之間的關聯法則,這個方法在辨識破產分析的主要特徵時,提供了更好的可靠性。
根據本研究所使用的25個財務比率,PSOISST模型分析結果的平均準確率為90%。運用權重、調整關聯法則,該模型將資產報酬率、收入成長率、每股盈餘、淨利率、營業利潤、固定資產周轉率和借貸依賴程度作為未失敗的工程公司成長的最重要的因素。另一方面,對於失敗的公司,模型輸出八個比率:每股盈餘、資產報酬率、稅後報酬率、存貨周轉率、債務與資產比率、借貸依賴性、淨利率、營業利潤,其中的兩個比率,依賴借貸和債務與資產比率已被確定為導致公司失敗非常關鍵的因素。
企業財務困境是全球商業部門的主要關注點,因此,本研究的成果將人工智慧與統計技術相結合,希望可以提供一個改善緩解破產的方法。
摘要(英) Financial crisis has raised concerns for years and its effect on companies influence economies globally. The ability to accurately identify the features responsible for business failure is an important issue in financial decision-making. The study made use of 3190 effective financial reports from 55 construction companies over a decade while applying 25 ratios. All the ratios involved each play a crucial role. We proposed a PSO(SIP) algorithm to visualize high-dimensional data as a two dimensional scatter plot. The projected scatter plot allows a straightforward analysis of the inherent structure of clusters within the analyzed data points. It will also assist traditional methods in analyzing ratios by providing visualized images for decision makers to make correct decisions for future problems. In addition, the visualized clusters will provide a better understanding of the relationships among ratios and enhance the study of the correlation between them. Our goal is to determine the factors responsible for distress in the Failed category and factors responsible for growth in the non-Failed category. To achieve our goal, the algorithm is combined with PCA to determine the weights of the features and then adjust and find association rules within the ratios. This method provides better reliability in the identification of the principal features in bankruptcy analysis.
Based on the 25 ratios used, the PSOISST model yields an average accuracy rate of 90%. Applying weights, adjusting and then mining association rules, the model identified return-on-assets, revenue growth rate, earning-per-share, profit margin, operating profit, fixed assets turnover ratio and dependence-on-borrowing as the most important contributors to growth in the non-failed construction companies. On the other hand, for the companies that have failed, the model output eight ratios namely; earnings per share, return on assets, after-tax rate of return, inventory turnover ratio, debt to assets ratio, dependence on borrowing, profit margin, operating profit. Two ratios, dependence-on-borrowing and debt-to-assets-ratio have been identified as very crucial contributors to failure.
Corporate financial distress is a major concern to business sectors worldwide; therefore, combining AI with statistical techniques improves results in mitigating bankruptcy.
關鍵字(中) ★ 公司成長
★ 財務困境
★ 財務比率
★ 群集分析
★ PSO(SIP)演算法
★ PCA
★ 關聯法則
關鍵字(英) ★ Growth
★ Financial distress
★ Financial ratios
★ Failed companies
★ Non-failed companies
★ cluster analysis
★ PSO(SIP) algorithm
★ PCA
★ partial adjustment
★ association rules
論文目次 Chapter 1 Introduction 1
1.1 Research Background and Motivation 1
1.2 Research Objectives 5
1.3 Significance of this research 6
1.4 Research scope definition 6
1.4.1 Research Hypothesis 7
1.5 Research Methodology 8
1.6 Study outline 13
Chapter 2 Literature Review 14
2.1 Particle Swarm Optimization (PSO)- Swarm Inspired Projection (SIP) algorithm 19
2.1.1 Basic concepts 19
2.1.2 Advantages and Disadvantages 27
2.2 Partial adjustment 29
2.2.1 Basic concepts 29
2.2.2 Advantages and disadvantages 30
2.3 Principal Component Analysis (PCA) 30
2.3.1 Basic concepts 30
2.3.2 advantages and disadvantages 34
2.4 Apriori algorithm (association rules) 36
2.4.1 Basic concepts 36
2.4.2 Advantages and disadvantages 39
Chapter 3 Data collection and analysis 41
3.1 Financial Ratios used in the Research 41
3.2 Discrete analysis 46
Chapter 4 PSOISST model implementation 52
4.1 Model architecture 52
4.1.1 Identify ratios 54
4.1.2 Investigate variability in data 55
4.1.3 Search for similarities and differences in data structure 55
4.1.4 Data Reduction 56
4.1.5 Weighting and adjustments 57
4.1.6 Mining association rules to determine relationships 57
4.2 Estimate cluster output and determine weights 58
4.3 Data reduction 59
4.3.1 Outlier observation and removal 59
4.3.2 Initial cluster weights (output) 61
4.3.3 Component extraction (output) 63
4.3.4 Factor rotation and interpretation (output) 67
4.4 Partial adjustment for failed companies (Failure analysis) 71
4.4.1 Discussion-Partial adjustment 73
4.5 Non-Failed companies (Growth analysis) 79
4.5.1 Discussion-Association rules interpretation (growth analysis) 84
Chapter 5 Model evaluation 87
5.1 PCA 88
5.1.1 Outlier observation and removal 88
5.1.3 Factor rotation and interpretation (output) 93
5.2 Failure analysis 95
5.3 Growth analysis 96
5.3.3 Non-Failed companies (Growth analysis) K- Fold output 96
5.4 Discussion 99
Chapter 6 Conclusion 102
6.1 Summary 102
6.2 Research accomplishments 103
6.3 Research Contributions and Relevancy 104
6.4 Limitations and Recommendations for future research 106
6.4.1 Critical recommendation 106
References 107
參考文獻 1. Inekwe, J.N., Y. Jin, and M.R. Valenzuela, The effects of financial distress: Evidence from US GDP growth. Economic Modelling, 2018. 72: p. 8-21.
2. Mokhatab Rafiei, F., S.M. Manzari, and S. Bostanian, Financial health prediction models using artificial neural networks, genetic algorithm and multivariate discriminant analysis: Iranian evidence. Expert Systems with Applications, 2011. 38(8): p. 10210-10217.
3. West, D., S. Dellana, and J. Qian, Neural network ensemble strategies for financial decision applications. Computers & Operations Research, 2005. 32(10): p. 2543-2559.
4. Chen, M.-Y., Predicting corporate financial distress based on integration of decision tree classification and logistic regression. Expert Systems with Applications, 2011. 38(9): p. 11261-11272.
5. Lin, F., D. Liang, and E. Chen, Financial ratio selection for business crisis prediction. Expert Systems with Applications, 2011. 38(12): p. 15094-15102.
6. Wu, D., L. Liang, and Z. Yang, Analyzing the financial distress of Chinese public companies using probabilistic neural networks and multivariate discriminate analysis. Socio-Economic Planning Sciences, 2008. 42(3): p. 206-220.
7. Bibu, N.A. and D.C. Sala, Aspects of Fast Growth in Romanian Companies. The Case of a Successful Company in Timis County. Procedia - Social and Behavioral Sciences, 2014. 124: p. 263-271.
8. Martikainen, T., K. Puhalainen, and P. Yli-Olli, On the industry effects on the classification patterns of financial ratios. Scandinavian Journal of Management, 1994. 10(1): p. 59-68.
9. Lai, C.-P. and J.-R. Lu, Evaluating the efficiency of currency portfolios constructed by the mining association rules. Asia Pacific Management Review, 2018.
10. When is a correlation matrix appropriate for factor analysis? Some decision rules, 1974, American Psychological Association: US. p. 358-361.
11. He, Q., et al., The impact of urban growth patterns on urban vitality in newly built-up areas based on an association rules analysis using geographical ‘big data’. Land Use Policy, 2018. 78: p. 726-738.
12. Vítková, E., J. Chovancová, and D. Veselý, Value Driver and Its Impact on Operational Profit in Construction Company. Procedia Computer Science, 2017. 121: p. 364-369.
13. Mashwama, N., C. Aigbavboa, and D. Thwala, An Assessment of the Critical Success factor for The Reduction of Cost of Poor Quality in Construction Projects in Swaziland. Procedia Engineering, 2017. 196: p. 447-453.
14. Horta, I.M., A.S. Camanho, and J. Moreira da Costa, Performance assessment of construction companies: A study of factors promoting financial soundness and innovation in the industry. International Journal of Production Economics, 2012. 137(1): p. 84-93.
15. Chen, J.-H., M.-C. Su, and B. Annuerine Badjie, Exploring and weighting features for financially distressed construction companies using Swarm Inspired Projection algorithm. Advanced Engineering Informatics, 2016. 30(3): p. 376-389.
16. Yusof, M.N. and A.H.A. Bakar, Knowledge Management and Growth Performance in Construction Companies: A Framework. Procedia - Social and Behavioral Sciences, 2012. 62: p. 128-134.
17. Achim, M.V., C. Mare, and S.N. Borlea, A Statistical Model of Financial Risk Bankruptcy Applied for Romanian Manufacturing Industry. Procedia Economics and Finance, 2012. 3(0): p. 132-137.
18. Mironiuc, M. and I.-B. Robu, Empirical Study on the Analysis of the Influence of the Audit Fees and Non Audit Fees Ratio to the Fraud Risk. Procedia - Social and Behavioral Sciences, 2012. 62(0): p. 179-183.
19. Kim, D., I. Lee, and H. Na, Financial distress, short sale constraints, and mispricing. Pacific-Basin Finance Journal, 2019. 53: p. 94-111.
20. Pham Vo Ninh, B., T. Do Thanh, and D. Vo Hong, Financial distress and bankruptcy prediction: An appropriate model for listed firms in Vietnam. Economic Systems, 2018. 42(4): p. 616-624.
21. Horta, I.M. and A.S. Camanho, Company failure prediction in the construction industry. Expert Systems with Applications, 2013. 40(16): p. 6253-6257.
22. Lian, Y., Financial distress and customer-supplier relationships. Journal of Corporate Finance, 2017. 43: p. 397-406.
23. Garcia-Appendini, E., Financial distress and competitors′ investment. Journal of Corporate Finance, 2018. 51: p. 182-209.
24. Boubaker, S., T. Hamza, and J. Vidal-García, Financial distress and equity returns: A leverage-augmented three-factor model. Research in International Business and Finance, 2018. 46: p. 1-15.
25. Dudley, E. and Q.E. Yin, Financial distress, refinancing, and debt structure. Journal of Banking & Finance, 2018. 94: p. 185-207.
26. Koh, S., et al., Financial distress: Lifecycle and corporate restructuring. Journal of Corporate Finance, 2015. 33: p. 19-33.
27. Butković, L.L., D. Bošković, and M. Katavić, International Marketing Strategies for Croatian Construction Companies. Procedia - Social and Behavioral Sciences, 2014. 119: p. 503-509.
28. Zhong, B., et al., A scientometric analysis and critical review of construction related ontology research. Automation in Construction, 2019. 101: p. 17-31.
29. Horrigan, J.O., Some Empirical Bases of Financial Ratio Analysis. The Accounting Review, 1965. 40(3): p. 558-568.
30. Beaver, W.H., Financial Ratios As Predictors of Failure. Journal of Accounting Research, 1966. 4: p. 71-111.
31. Tsai, C.-F., Combining cluster analysis with classifier ensembles to predict financial distress. Information Fusion, 2014. 16(0): p. 46-58.
32. Chen, M.-Y., A hybrid ANFIS model for business failure prediction utilizing particle swarm optimization and subtractive clustering. Information Sciences, 2013. 220(0): p. 180-195.
33. Chen, N., et al., Clustering and visualization of bankruptcy trajectory using self-organizing map. Expert Systems with Applications, 2013. 40(1): p. 385-393.
34. De Andrés, J., et al., Bankruptcy forecasting: A hybrid approach using Fuzzy c-means clustering and Multivariate Adaptive Regression Splines (MARS). Expert Systems with Applications, 2011. 38(3): p. 1866-1875.
35. Enke, D., M. Grauer, and N. Mehdiyev, Stock Market Prediction with Multiple Regression, Fuzzy Type-2 Clustering and Neural Networks. Procedia Computer Science, 2011. 6(0): p. 201-206.
36. Huang, S.-C., Integrating spectral clustering with wavelet based kernel partial least square regressions for financial modeling and forecasting. Applied Mathematics and Computation, 2011. 217(15): p. 6755-6764.
37. Karimi, S. and B. Hemmateenejad, Identification of discriminatory variables in proteomics data analysis by clustering of variables. Analytica Chimica Acta, 2013. 767(0): p. 35-43.
38. Lai, R.K., et al., Evolving and clustering fuzzy decision tree for financial time series data forecasting. Expert Systems with Applications, 2009. 36(2, Part 2): p. 3761-3773.
39. Sun, J. and H. Li, Data mining method for listed companies’ financial distress prediction. Knowledge-Based Systems, 2008. 21(1): p. 1-5.
40. Chen, J.-H., A hybrid knowledge-sharing model for corporate foreign investment in China’s construction market. Expert Systems with Applications, 2012. 39(9): p. 7585-7590.
41. Gallizo, J.L. and M. Salvador, Understanding the behavior of financial ratios: the adjustment process. Journal of Economics and Business, 2003. 55(3): p. 267-283.
42. Dagilienė, L., The Influence of Corporate Social Reporting to Company′s Value in a Developing Economy. Procedia Economics and Finance, 2013. 5: p. 212-221.
43. Lo Turco, A., D. Maggioni, and A. Zazzaro, Financial dependence and growth: The role of input-Output linkages. Journal of Economic Behavior & Organization, 2018.
44. Lim, T., Growth, financial development, and housing booms. Economic Modelling, 2018. 69: p. 91-102.
45. Kim, D.-W., J.-S. Yu, and M.K. Hassan, Financial inclusion and economic growth in OIC countries. Research in International Business and Finance, 2018. 43: p. 1-14.
46. Ibrahim, M. and P. Alagidede, Effect of financial development on economic growth in sub-Saharan Africa. Journal of Policy Modeling, 2018. 40(6): p. 1104-1125.
47. Vlasova, M., et al., Tools for Company′s Sustainable Economic Growth. Procedia Engineering, 2016. 165: p. 1118-1124.
48. dos Santos, D.S. and A.L.C. Bazzan, Distributed clustering for group formation and task allocation in multiagent systems: A swarm intelligence approach. Applied Soft Computing, 2012. 12(8): p. 2123-2131.
49. Gajawada, S. and D. Toshniwal, Projected Clustering Using Particle Swarm Optimization. Procedia Technology, 2012. 4(0): p. 360-364.
50. Hsieh, T.-J., H.-F. Hsiao, and W.-C. Yeh, Mining financial distress trend data using penalty guided support vector machines based on hybrid of particle swarm optimization and artificial bee colony algorithm. Neurocomputing, 2012. 82(0): p. 196-206.
51. Huang, C.-L., et al., Hybridization strategies for continuous ant colony optimization and particle swarm optimization applied to data clustering. Applied Soft Computing, 2013. 13(9): p. 3864-3872.
52. Shen, W., et al., Forecasting stock indices using radial basis function neural networks optimized by artificial fish swarm algorithm. Knowledge-Based Systems, 2011. 24(3): p. 378-385.
53. Tsai, C.-Y. and I.W. Kao, Particle swarm optimization with selective particle regeneration for data clustering. Expert Systems with Applications, 2011. 38(6): p. 6565-6576.
54. Xu, W., et al., Financial ratio selection for business failure prediction using soft set theory. Knowledge-Based Systems, 2014. 63: p. 59-67.
55. Montford, W.J., R.B. Leary, and D.M. Nagel, The impact of implicit self-theories and loss salience on financial risk. Journal of Business Research, 2019. 99: p. 1-11.
56. Bawa, J.K., et al., An analysis of NPAs of Indian banks: Using a comprehensive framework of 31 financial ratios. IIMB Management Review, 2019. 31(1): p. 51-62.
57. Turlington, J., S. Fafatas, and E.G. Oliver, Is it U.S. GAAP or IFRS? Understanding how R&D costs affect ratio analysis. Business Horizons, 2019. 62(4): p. 427-436.
58. Kanapickienė, R. and Ž. Grundienė, The Model of Fraud Detection in Financial Statements by Means of Financial Ratios. Procedia - Social and Behavioral Sciences, 2015. 213: p. 321-327.
59. Gimet, C., T. Lagoarde-Segot, and L. Reyes-Ortiz, Financialization and the macroeconomy. Theory and empirical evidence. Economic Modelling, 2018.
60. Sayari, N. and C.S. Mugan, Industry specific financial distress modeling. BRQ Business Research Quarterly, 2017. 20(1): p. 45-62.
61. Su, M.-C., S.-Y. Su, and Y.-X. Zhao, A swarm-inspired projection algorithm. Pattern Recognition, 2009. 42(11): p. 2764-2786.
62. Matos, J., et al., Optimization strategies for chiral separation by true moving bed chromatography using Particles Swarm Optimization (PSO) and new Parallel PSO variant. Computers & Chemical Engineering, 2019. 123: p. 344-356.
63. Hamdi, H., C. Ben Regaya, and A. Zaafouri, Real-time study of a photovoltaic system with boost converter using the PSO-RBF neural network algorithms in a MyRio controller. Solar Energy, 2019. 183: p. 1-16.
64. Qi, Y., et al., Research on demodulation of FBGs sensor network based on PSO-SA algorithm. Optik, 2018. 164: p. 647-653.
65. Nobile, M.S., et al., Fuzzy Self-Tuning PSO: A settings-free algorithm for global optimization. Swarm and Evolutionary Computation, 2018. 39: p. 70-85.
66. Liu, W., et al., Meteorological pattern analysis assisted daily PM2.5 grades prediction using SVM optimized by PSO algorithm. Atmospheric Pollution Research, 2019.
67. Hu, X.T., et al., A Novel Self-Adaptation Hybrid Artificial Fish-Swarm Algorithm. IFAC Proceedings Volumes, 2013. 46(5): p. 583-588.
68. Qais, M.H., H.M. Hasanien, and S. Alghuwainem, Enhanced salp swarm algorithm: Application to variable speed wind generators. Engineering Applications of Artificial Intelligence, 2019. 80: p. 82-96.
69. Gallizo, J.L., P. Gargallo, and M. Salvador, Multivariate Partial Adjustment of Financial Ratios: A Bayesian Hierarchical Approach. Journal of Applied Econometrics, 2008. 23(1): p. 43-64.
70. Wu, C. and S.-J. Ho, Financial Ratio Adjustment: Industry-Wide Effects or Strategic Management. Review of Quantitative Finance and Accounting, 1997. 9(1): p. 71-88.
71. Davis, H.Z. and Y.C. Peles, Measuring Equilibrating Forces of Financial Ratios. The Accounting Review, 1993. 68(4): p. 725-747.
72. Lev, B., Industry Averages as Targets for Financial Ratios. Journal of Accounting Research, 1969. 7(2): p. 290-299.
73. Peles, Y.C. and M.I. Schneller, The Duration of the Adjustment Process of Financial Ratios. The Review of Economics and Statistics, 1989. 71(3): p. 527-532.
74. Kao, L. and A. Chen, Partial adjustment of hybrid book-building IPOs with a pre-IPO market. The Quarterly Review of Economics and Finance, 2019.
75. Lin, W.T., Y.H. Chen, and T. Hung, A partial adjustment valuation approach with stochastic and dynamic speeds of partial adjustment to measuring and evaluating the business value of information technology. European Journal of Operational Research, 2019. 272(2): p. 766-779.
76. Alkarkhi, A.F.M. and W.A.A. Alqaraghuli, Chapter 8 - Principal Components Analysis, in Easy Statistics for Food Science with R, A.F.M. Alkarkhi and W.A.A. Alqaraghuli, Editors. 2019, Academic Press. p. 125-141.
77. Tran, N.M., et al., Principal component analysis in an asymmetric norm. Journal of Multivariate Analysis, 2019. 171: p. 1-21.
78. Gupta, A. and A. Barbu, Parameterized principal component analysis. Pattern Recognition, 2018. 78: p. 215-227.
79. Trucíos, C., L.K. Hotta, and P.L. Valls Pereira, On the robustness of the principal volatility components. Journal of Empirical Finance, 2019. 52: p. 201-219.
80. Mi, J.-X., et al., Principal Component Analysis based on Nuclear norm Minimization. Neural Networks, 2019. 118: p. 1-16.
81. gang, W.X., A Summary of Research on Frequent Itemsets Mining Technology. Procedia Computer Science, 2018. 131: p. 841-846.
82. Tripathi, D., B. Nigam, and D.R. Edla, A Novel Web Fraud Detection Technique using Association Rule Mining. Procedia Computer Science, 2017. 115: p. 274-281.
83. Telikani, A. and A. Shahbahrami, Data sanitization in association rule mining: An analytical review. Expert Systems with Applications, 2018. 96: p. 406-426.
84. Zou, C., et al., Mining and updating association rules based on fuzzy concept lattice. Future Generation Computer Systems, 2018. 82: p. 698-706.
85. Ruiz, M.D., et al., Meta-association rules for mining interesting associations in multiple datasets. Applied Soft Computing, 2016. 49: p. 212-223.
86. Gahar, R.M., et al., An Ontology-driven MapReduce Framework for Association Rules Mining in Massive Data. Procedia Computer Science, 2018. 126: p. 224-233.
87. Grundke, P. and A. Kühn, The impact of the Basel III liquidity ratios on banks: Evidence from a simulation study. The Quarterly Review of Economics and Finance, 2019.
88. Fuhrer, L.M., B. Müller, and L. Steiner, The Liquidity Coverage Ratio and security prices. Journal of Banking & Finance, 2017. 75: p. 292-311.
89. Altay, E. and S. Çalgıcı, Liquidity adjusted capital asset pricing model in an emerging market: Liquidity risk in Borsa Istanbul. Borsa Istanbul Review, 2019.
90. Chen, Z., K. Gao, and W. Huang, Stock liquidity and excess leverage. Finance Research Letters, 2019.
91. Sabade, S.S. and D.M.H. Walker, IDDQ data analysis using neighbor current ratios. Journal of Systems Architecture, 2004. 50(5): p. 287-294.
92. Jeong, G., J. Kang, and K.Y. Kwon, Liquidity skewness premium. The North American Journal of Economics and Finance, 2018. 46: p. 130-150.
93. Hu, Y., Y. Li, and J. Zeng, Stock liquidity and corporate cash holdings. Finance Research Letters, 2019. 28: p. 416-422.
94. Barth, J.R. and S.M. Miller, Benefits and costs of a higher bank “leverage ratio”. Journal of Financial Stability, 2018. 38: p. 37-52.
95. Jarrow, R., A leverage ratio rule for capital adequacy. Journal of Banking & Finance, 2013. 37(3): p. 973-976.
96. Kiema, I. and E. Jokivuolle, Does a leverage ratio requirement increase bank stability? Journal of Banking & Finance, 2014. 39: p. 240-254.
97. Pan, W.-F., X. Wang, and S. Yang, Debt maturity, leverage, and political uncertainty. The North American Journal of Economics and Finance, 2019. 50: p. 100981.
98. Chen, X., G. Wang, and X. Zhang, Modeling recovery rate for leveraged loans. Economic Modelling, 2019.
99. Olesen, O.B., N.C. Petersen, and V.V. Podinovski, Efficiency analysis with ratio measures. European Journal of Operational Research, 2015. 245(2): p. 446-462.
100. Bitar, M., K. Pukthuanthong, and T. Walker, The effect of capital ratios on the risk, efficiency and profitability of banks: Evidence from OECD countries. Journal of International Financial Markets, Institutions and Money, 2018. 53: p. 227-262.
101. Appendix G - Relative Efficiency Ratio, in Solar Photovoltaic Cells, A.P. Kirk, Editor. 2015, Academic Press: Oxford. p. 117-118.
102. Hanselaar, R.M., R.M. Stulz, and M.A. van Dijk, Do firms issue more equity when markets become more liquid? Journal of Financial Economics, 2019. 133(1): p. 64-82.
103. Anuar, H. and O. Chin, The Development of Debt to Equity Ratio in Capital Structure Model: A Case of Micro Franchising. Procedia Economics and Finance, 2016. 35: p. 274-280.
104. Kellard, N.M., J.C. Nankervis, and F.I. Papadimitriou, Predicting the equity premium with dividend ratios: Reconciling the evidence. Journal of Empirical Finance, 2010. 17(4): p. 539-551.
105. Glantz, M., Chapter 4 - Ratios Every Business Should Monitor, in Navigating the Business Loan, M. Glantz, Editor. 2015, Academic Press: San Diego. p. 55-80.
106. Yang, M. and S. Evans, Product-service system business model archetypes and sustainability. Journal of Cleaner Production, 2019. 220: p. 1156-1166.
107. Chang, X. and J. Li, Business performance prediction in location-based social commerce. Expert Systems with Applications, 2019. 126: p. 112-123.
108. Journal, T.E. Construction groups in Taiwan. finanasia 1998 to 2008; Available from: http://www.finasia.biz/ensite/Default.aspx?TabId=110.
109. Politou, E., E. Alepis, and C. Patsakis, Profiling tax and financial behaviour with big data under the GDPR. Computer Law & Security Review, 2019.
110. Pando, V., L.A. San-José, and J. Sicilia, Profitability ratio maximization in an inventory model with stock-dependent demand rate and non-linear holding cost. Applied Mathematical Modelling, 2019. 66: p. 643-661.
111. Lo Turco, A., D. Maggioni, and A. Zazzaro, Financial dependence and growth: The role of input-output linkages. Journal of Economic Behavior & Organization, 2019. 162: p. 308-328.
112. Inekwe, J.N., Y. Jin, and M.R. Valenzuela, Financial conditions and economic growth. International Review of Economics & Finance, 2019. 61: p. 128-140.
113. Hsieh, J., T.-C. Chen, and S.-C. Lin, Financial structure, bank competition and income inequality. The North American Journal of Economics and Finance, 2019. 48: p. 450-466.
114. Allen, F., et al., Does economic structure determine financial structure? Journal of International Economics, 2018. 114: p. 389-409.
115. Ghecham, M.A. and A. Salih, Panel financial ratios data underlying the performance of conventional and islamic banks operating in GCC. Data in Brief, 2019. 24: p. 103979.
116. Nuryani, N., T.T. Heng, and N. Juliesta, Capitalization of Operating Lease and Its Impact on Firm′s Financial Ratios. Procedia - Social and Behavioral Sciences, 2015. 211: p. 268-276.
117. Frantz, P. and N. Instefjord, Debt overhang and non-distressed debt restructuring. Journal of Financial Intermediation, 2019. 37: p. 75-88.
118. D′Mello, R., M. Gruskin, and M. Kulchania, Shareholders valuation of long-term debt and decline in firms′ leverage ratio. Journal of Corporate Finance, 2018. 48: p. 352-374.
119. Li, H. and J. Sun, Empirical research of hybridizing principal component analysis with multivariate discriminant analysis and logistic regression for business failure prediction. Expert Systems with Applications, 2011. 38(5): p. 6244-6253.
120. Fávero, L.P. and P. Belfiore, Chapter 12 - Principal Component Factor Analysis, in Data Science for Business and Decision Making, L.P. Fávero and P. Belfiore, Editors. 2019, Academic Press. p. 383-438.
121. Cerny, B.A. and H.F. Kaiser, A Study Of A Measure Of Sampling Adequacy For Factor-Analytic Correlation Matrices. Multivariate Behavioral Research, 1977. 12(1): p. 43-47.
122. Kaiser, H., A second generation little jiffy. Psychometrika, 1970. 35(4): p. 401-415.
123. Tobias, S. and J.E. Carlson, BRIEF REPORT: BARTLETT′S TEST OF SPHERICITY AND CHANCE FINDINGS IN FACTOR ANALYSIS. Multivariate Behavioral Research, 1969. 4(3): p. 375-377.
124. Cattell, R.B., The Scree Test For The Number Of Factors. Multivariate Behavioral Research, 1966. 1(2): p. 245-276.
125. Thurstone, L.L., Thurstone, L. L. Multiple‐factor analysis. Chicago: University of Chicago Press, 1947, pp. 535. $7.50. Journal of Clinical Psychology, 1947. 4(2): p. 224-224.
126. Maroney, N., W. Wang, and M. Kabir Hassan, Incorporating active adjustment into a financing based model of capital structure. Journal of International Money and Finance, 2019. 90: p. 204-221.
127. Bernier, M. and M. Plouffe, Financial innovation, economic growth, and the consequences of macroprudential policies. Research in Economics, 2019. 73(2): p. 162-173.
128. Combes, J.-L., et al., Financial flows and economic growth in developing countries. Economic Modelling, 2019.
129. Asteriou, D. and K. Spanos, The relationship between financial development and economic growth during the recent crisis: Evidence from the EU. Finance Research Letters, 2019. 28: p. 238-245.
130. Chichaibelu, B.B. and H. Waibel, Borrowing from “Pui” to Pay “Pom”: Multiple Borrowing and Over-Indebtedness in Rural Thailand. World Development, 2017. 98: p. 338-350.
131. Eilon, S., Earning per share and takeovers. Journal of Banking & Finance, 1978. 2(3): p. 257-267.
132. Potjes, J.C.A. and A. Roy Thurik, Profit margins in Japanese retailing. Japan and the World Economy, 1993. 5(4): p. 337-362.
133. How, B.s. and H.L. Lam, Sustainability evaluation for biomass supply chain synthesis: Novel principal component analysis (PCA) aided optimisation approach. Journal of Cleaner Production, 2018. 189: p. 941-961.
134. Hong, D., D. Zhao, and Y. Zhang, The Entropy and PCA Based Anomaly Prediction in Data Streams. Procedia Computer Science, 2016. 96: p. 139-146.
135. Salo, F., A.B. Nassif, and A. Essex, Dimensionality reduction with IG-PCA and ensemble classifier for network intrusion detection. Computer Networks, 2019. 148: p. 164-175.
136. Hong, D., L. Balzano, and J.A. Fessler, Asymptotic performance of PCA for high-dimensional heteroscedastic data. Journal of Multivariate Analysis, 2018. 167: p. 435-452.
137. Bosisio, A., et al., Improving DTR assessment by means of PCA applied to wind data. Electric Power Systems Research, 2019. 172: p. 193-200.
指導教授 陳介豪 蘇木春 謝易錚(Chen Jieh-Haur Su Mu-Chun Hsieh Yi-Zeng) 審核日期 2019-8-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明